-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_OSEM.py
99 lines (81 loc) · 4.5 KB
/
main_OSEM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
"""Main file to modify for submissions.
Once renamed or symlinked as `main.py`, it will be used by `petric.py` as follows:
>>> from main import Submission, submission_callbacks
>>> from petric import data, metrics
>>> algorithm = Submission(data)
>>> algorithm.run(np.inf, callbacks=metrics + submission_callbacks)
"""
import sirf.STIR as STIR
from cil.optimisation.algorithms import Algorithm
from cil.optimisation.utilities import callbacks
from petric import Dataset
from sirf.contrib.partitioner.partitioner import partition_indices
class MaxIteration(callbacks.Callback):
"""
The organisers try to `Submission(data).run(inf)` i.e. for infinite iterations (until timeout).
This callback forces stopping after `max_iteration` instead.
"""
def __init__(self, max_iteration: int, verbose: int = 1):
super().__init__(verbose)
self.max_iteration = max_iteration
def __call__(self, algorithm: Algorithm):
if algorithm.iteration >= self.max_iteration:
raise StopIteration
class Submission(Algorithm):
"""
OSEM algorithm example.
NB: In OSEM, the multiplicative term cancels in the back-projection of the quotient of measured & estimated data
(so this is used here for efficiency).
A similar optimisation can be used for all algorithms using the Poisson log-likelihood.
NB: OSEM does not use `data.prior` and thus does not converge to the MAP reference used in PETRIC.
NB: this example does not use the `sirf.STIR` Poisson objective function.
NB: see https://github.com/SyneRBI/SIRF-Contribs/tree/master/src/Python/sirf/contrib/BSREM
"""
def __init__(self, data: Dataset, num_subsets: int = 7, update_objective_interval: int = 10, **kwargs):
"""
Initialisation function, setting up data & (hyper)parameters.
NB: in practice, `num_subsets` should likely be determined from the data.
This is just an example. Try to modify and improve it!
"""
self.acquisition_models = []
self.prompts = []
self.sensitivities = []
self.subset = 0
self.x = data.OSEM_image.clone()
# find views in each subset
# (note that SIRF can currently only do subsets over views)
views = data.mult_factors.dimensions()[2]
partitions_idxs = partition_indices(num_subsets, list(range(views)), stagger=True)
# for each subset: find data, create acq_model, and create subset_sensitivity (backproj of 1)
for i in range(num_subsets):
prompts_subset = data.acquired_data.get_subset(partitions_idxs[i])
additive_term_subset = data.additive_term.get_subset(partitions_idxs[i])
multiplicative_factors_subset = data.mult_factors.get_subset(partitions_idxs[i])
acquisition_model_subset = STIR.AcquisitionModelUsingParallelproj()
acquisition_model_subset.set_additive_term(additive_term_subset)
acquisition_model_subset.set_up(prompts_subset, self.x)
subset_sensitivity = acquisition_model_subset.backward(multiplicative_factors_subset)
# add a small number to avoid NaN in division
subset_sensitivity += subset_sensitivity.max() * 1e-6
self.acquisition_models.append(acquisition_model_subset)
self.prompts.append(prompts_subset)
self.sensitivities.append(subset_sensitivity)
super().__init__(update_objective_interval=update_objective_interval, **kwargs)
self.configured = True # required by Algorithm
def update(self):
# compute forward projection for the denomintor
# add a small number to avoid NaN in division, as OSEM lead to 0/0 or worse.
# (Theoretically, MLEM cannot, but it might nevertheless due to numerical issues)
denom = self.acquisition_models[self.subset].forward(self.x) + .0001
# divide measured data by estimate (ignoring mult_factors!)
quotient = self.prompts[self.subset] / denom
# update image with quotient of the backprojection (without mult_factors!) and the sensitivity
self.x *= self.acquisition_models[self.subset].backward(quotient) / self.sensitivities[self.subset]
self.subset = (self.subset + 1) % len(self.prompts)
def update_objective(self):
"""
NB: The objective value is not required by OSEM nor by PETRIC, so this returns `0`.
NB: It should be `sum(prompts * log(acq_model.forward(self.x)) - self.x * sensitivity)` across all subsets.
"""
return 0
submission_callbacks = [MaxIteration(660)]