-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
215 lines (162 loc) · 6.24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
"""Script for training a SplitNN"""
import argparse
from pathlib import Path
from typing import Tuple
import torch
import torchvision.transforms as transforms
from torch.utils.tensorboard import SummaryWriter
from torchvision.datasets import MNIST
from tqdm import tqdm
import syft as sy
from src import SplitNN, NoPeekLoss, model_part1, model_part2
# Set torch-hook
hook = sy.TorchHook(torch)
def train_epoch(model, criterion, train_loader, device) -> Tuple[float, float]:
train_loss = 0.0
correct = 0
total = 0
first_model_location = model.location
last_model_location = model.models[-1].location
model.train()
for batch_idx, (inputs, targets) in enumerate(train_loader):
inputs = inputs.to(device).send(first_model_location)
targets = targets.to(device).send(last_model_location)
model.zero_grads()
outputs, intermediates = model(inputs)
losses = criterion(inputs, intermediates, outputs, targets)
_step_loss = 0.0
for loss in losses:
loss.backward()
_step_loss += loss.get().item()
model.backward()
model.step()
train_loss += _step_loss
outputs = outputs.get()
targets = targets.get()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
return 100 * correct / total, train_loss
def test(model, test_loader, device) -> float:
# Evaluate on test data
correct_test = 0
total_test = 0
first_model_location = model.location
last_model_location = model.models[-1].location
model.eval()
for test_inputs, test_targets in test_loader:
test_inputs = test_inputs.to(device).send(first_model_location)
test_targets = test_targets.to(device).send(last_model_location)
with torch.no_grad():
outputs, _ = model(test_inputs)
outputs = outputs.get()
test_targets = test_targets.get()
_, predicted = outputs.max(1)
total_test += test_targets.size(0)
correct_test += predicted.eq(test_targets).sum().item()
return 100 * correct_test / total_test
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train a SplitNN with NoPeek loss")
parser.add_argument(
"--nopeek_weight",
type=float,
required=True,
help="Weighting of NoPeek loss term. If 0.0, NoPeek is not used. Required.",
)
parser.add_argument(
"--epochs", default=5, type=int, help="Number of epochs to run for (default 5)",
)
parser.add_argument(
"--batch_size", default=64, type=int, help="Batch size (default 64)"
)
parser.add_argument(
"--learning_rate",
default=0.6,
type=float,
help="Starting learning rate (default 0.6)",
)
parser.add_argument(
"--saveas",
default="nopeek",
type=str,
help="Name of model to save as (default is 'nopeek')."
"Note that '_{nopeek_weight}weight' will be appended to the end of the name",
)
parser.add_argument(
"--n_train_data",
default=10_000,
type=int,
help="Number of training points to use (default 10'000)",
)
args = parser.parse_args()
weighting = args.nopeek_weight
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# File paths
project_root = Path(__file__).resolve().parent
data_dir = project_root / "data"
root_model_path = project_root / "models"
# Model name
model_name = args.saveas + f"_{weighting}weight".replace(".", "")
MODEL_SAVE_PATH = (root_model_path / model_name).with_suffix(".pth")
summary_writer_path = project_root / "models" / ("tb_" + model_name)
# ----- Model Parts -----
models = [model_part1, model_part2]
optims = [torch.optim.SGD(model.parameters(), lr=args.learning_rate,) for model in models]
# ----- Users -----
alice = sy.VirtualWorker(hook, id="alice")
bob = sy.VirtualWorker(hook, id="bob")
for model, location in zip(models, [alice, bob]):
model.send(location)
# Create model
split_model = SplitNN([model_part1, model_part2], optims)
split_model.train()
# ----- Data -----
data_transform = transforms.Compose(
[
transforms.ToTensor(),
# PyTorch examples; https://github.com/pytorch/examples/blob/master/mnist/main.py
transforms.Normalize((0.1307,), (0.3081,)),
]
)
train_data = MNIST(data_dir, download=True, train=True, transform=data_transform)
# We only want to use a subset of the data to force overfitting
train_data.data = train_data.data[: args.n_train_data]
train_data.targets = train_data.targets[: args.n_train_data]
train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.batch_size)
# Test data
test_data = MNIST(data_dir, download=True, train=False, transform=data_transform)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=1024)
# ----- Train -----
n_epochs = args.epochs
best_accuracy = 0.0
# writer = SummaryWriter(summary_writer_path)
criterion = NoPeekLoss(weighting)
epoch_pbar = tqdm(total=n_epochs)
print("Starting training...")
for epoch in range(n_epochs):
train_acc, train_loss = train_epoch(
split_model, criterion, train_loader, DEVICE
)
test_acc = test(split_model, test_loader, DEVICE)
# Update tensorboard
# writer.add_scalars("Accuracy", {"train": train_acc, "test": test_acc}, epoch)
# writer.add_scalar("Loss/train", train_loss, epoch)
# Save model if it's an improvement
if test_acc > best_accuracy:
best_accuracy = test_acc
state_dict = {
"model_state_dict": split_model.state_dict(),
"epoch": epoch,
"train_acc": train_acc,
"test_acc": test_acc,
}
torch.save(state_dict, MODEL_SAVE_PATH)
# Update prog bar text
epoch_pbar.set_description(
f"Train {train_acc: .2f}%; "
f"Test {test_acc : .2f}%; "
f"Best test {best_accuracy : .2f}%"
)
epoch_pbar.update(1)
epoch_pbar.close()
# writer.close()