forked from denniscwylie/maclearn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKnnSimBoot.R
107 lines (96 loc) · 2.99 KB
/
KnnSimBoot.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
library(caret)
library(class)
library(ggplot2)
source("SimData.R")
x2_train = simulate2Group(n=100, p=2, effect=rep(1.25, 2))
nBoot = 100
knnBoot = train(
x = x2_train$x,
y = x2_train$y,
method = "knn",
tuneGrid = data.frame(k=3),
trControl = trainControl(method="boot632", number=nBoot)
)
knnBoot$results
x2_test = simulate2Group(n=100, p=2, effect=rep(1.25, 2))
knnTest = predict(knnBoot, x2_test$x)
sum(diag(table(knnTest, x2_test$y))) / sum(table(knnTest, x2_test$y))
parGrid = expand.grid(
n = 100,
p = c(2, 5, 10, 25, 100, 500),
k = c(3, 5, 10, 25)
)
parGrid$effect = rep(2.5 / sqrt(parGrid$p))
rownames(parGrid) = paste0("p", parGrid$p, "_k", parGrid$k)
knnSimulate = function(param, nBoot=100) {
param = as.list(param)
trainSet = simulate2Group(n=param$n, p=param$p,
effect=rep(param$effect, param$p))
testSet = simulate2Group(n=param$n, p=param$p,
effect=rep(param$effect, param$p))
knnCaretControl = trainControl(method="boot632", number=nBoot)
knnBoot = train(
x = trainSet$x,
y = trainSet$y,
method = "knn",
tuneGrid = data.frame(k=param$k),
trControl = trainControl(method="boot632", number=nBoot)
)
out = list(
p = param$p,
k = param$k,
train = trainSet,
test = testSet,
testPreds = predict(knnBoot, testSet$x),
testProbs = predict(knnBoot, testSet$x, type="prob")[ , 2]
)
out$bootAccuracy = knnBoot$results[ , "Accuracy"]
out$testTable = table(
Predicted = out$testPreds,
Actual = testSet$y
)
out$testAccuracy = sum(diag(out$testTable)) /
sum(out$testTable)
return(out)
}
set.seed(123)
repeatedKnnResults = lapply(X=1:5, FUN=function(...) {
apply(X=parGrid, MARGIN=1, FUN=knnSimulate)
})
repeatedKnnResults = do.call(c, args=repeatedKnnResults)
knnResultsSimplified = data.frame(do.call(rbind, args=lapply(
X = repeatedKnnResults,
FUN = function(x) {
outColnames = c("p", "k", "bootAccuracy", "testAccuracy")
out = x[outColnames]
return(structure(as.numeric(out), names=outColnames))
}
)))
ggdata = rbind(
data.frame(
p = knnResultsSimplified$p,
k = paste0("k=", knnResultsSimplified$k),
type = "boot632",
Accuracy = knnResultsSimplified$bootAccuracy
),
data.frame(
p = knnResultsSimplified$p,
k = paste0("k=", knnResultsSimplified$k),
type = "test",
Accuracy = knnResultsSimplified$testAccuracy
)
)
ggdata$k = factor(as.character(ggdata$k),
levels=c("k=3", "k=5", "k=10", "k=25"))
ggobj = ggplot(
data = ggdata,
mapping = aes(x=p, y=Accuracy,
color=type, group=type, linetype=type)
) + theme_bw()
ggobj = ggobj + scale_x_log10()
ggobj = ggobj + geom_point(alpha=0.6)
ggobj = ggobj + stat_smooth(method='loess', method.args=list(degree=1))
ggobj = ggobj + facet_wrap(~k)
## pdf("KnnSimBoot632.pdf", h=5, w=5*1.175)
print(ggobj)
## garbage = dev.off()