forked from denniscwylie/maclearn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPredictingGeneExpression.py
149 lines (124 loc) · 4.72 KB
/
PredictingGeneExpression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from collections import OrderedDict
import copy
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from pandas import DataFrame, Series
import plotnine as gg
import scipy as sp
import scipy.stats as stats
import sklearn as sk
import sklearn.model_selection as model_selection
from sklearn.model_selection import ShuffleSplit
import sklearn.feature_selection as feature_selection
import sklearn.linear_model as linear_model
import sklearn.pipeline as pipeline
import MaclearnUtilities
from MaclearnUtilities import bhfdr, colcor
plt.ion()
def pandaize(f):
def pandaized(estimator, X, y, **kwargs):
return f(estimator, np.array(X), y, **kwargs)
return pandaized
@pandaize
def cross_val_score_pd(estimator, X, y, **kwargs):
return model_selection.cross_val_score(estimator, X, y, **kwargs)
## -----------------------------------------------------------------
## load Patel data
## -----------------------------------------------------------------
def readTab(file):
return pd.read_csv(file, sep="\t", header=0, index_col=0)
x = readTab("rnaseq/GSE57872/GSE57872_DataMatrixMapped.tsv.gz").transpose()
y = x.BRCA1
x0 = x[ x.columns[x.columns != "BRCA1"] ]
cvSched = ShuffleSplit(n_splits=10, test_size=0.1, random_state=123)
corPVals = colcor(x0, y)['p']
corQVals = bhfdr(corPVals)
corQVals.sort_values(inplace=False).head()
plt.close()
ax = plt.subplot(111)
x.plot.scatter(x="CDK1", y="BRCA1", ax=ax)
## -----------------------------------------------------------------
## unregularized linear regression
## -----------------------------------------------------------------
nFeats = [2, 5, 10, 20, 50, 100, 200, 500, 1000]
brca1Modelers = OrderedDict([
(n, pipeline.Pipeline([
('featsel', feature_selection.SelectKBest(
feature_selection.f_regression, k=n)),
('regressor', linear_model.LinearRegression())
]))
for n in nFeats
])
brca1Model20 = copy.deepcopy(brca1Modelers[20]).fit(x0, y)
brca1Preds = brca1Model20.predict(x0)
stats.pearsonr(brca1Preds, y)[0]
brca1Model1000 = copy.deepcopy(brca1Modelers[1000]).fit(x0, y)
brca1Preds = brca1Model1000.predict(x0)
stats.pearsonr(brca1Preds, y)[0]
cvR2s_unreg = Series(OrderedDict([
(n, np.mean(cross_val_score_pd(copy.deepcopy(brca1Modelers[n]),
X = x0,
y = y,
cv = cvSched.split(x0))))
for n in nFeats
]))
## -----------------------------------------------------------------
## L2-regularized linear regression
## -----------------------------------------------------------------
brca1Modelers2 = OrderedDict([
(n, pipeline.Pipeline([
('featsel', feature_selection.SelectKBest(
feature_selection.f_regression, k=n)),
('regressor', linear_model.Ridge(
alpha=len(y)*(1.5 + 0.034*n)))
]))
for n in nFeats
])
cvR2s_L2 = Series(OrderedDict([
(n, np.mean(cross_val_score_pd(copy.deepcopy(brca1Modelers2[n]),
X = x0,
y = y,
cv = cvSched)))
for n in nFeats
]))
## -----------------------------------------------------------------
## L1-regularized linear regression
## -----------------------------------------------------------------
brca1Modelers1 = OrderedDict([
(n, pipeline.Pipeline([
('featsel', feature_selection.SelectKBest(
feature_selection.f_regression, k=n)),
('regressor', linear_model.Lasso(
alpha=max(0, (0.0235*np.log(n)-0.0157))))
]))
for n in nFeats
])
cvR2s_L1 = Series(OrderedDict([
(n, np.mean(cross_val_score_pd(copy.deepcopy(brca1Modelers1[n]),
X = x0,
y = y,
cv = cvSched)))
for n in nFeats
]))
## -----------------------------------------------------------------
## plot results
## -----------------------------------------------------------------
plotdata = DataFrame({
"Number Potential Features" : nFeats * 3,
"Rsquared" : pd.concat([cvR2s_unreg, cvR2s_L2, cvR2s_L1]),
"Regularization" : (['-']*len(nFeats) +
['L2/ridge']*len(nFeats) +
['L1/lasso']*len(nFeats))
})
plotdata.index = (plotdata["Number Potential Features"].apply(str) + "_" +
plotdata["Regularization"])
plotdata = plotdata.loc[plotdata.Rsquared > 0]
plt.close()
ggo = gg.ggplot(plotdata, gg.aes(x = 'Number Potential Features',
y = 'Rsquared',
linetype = 'Regularization'))
ggo += gg.geom_line()
ggo += gg.theme_bw()
ggo += gg.scale_x_log10()
print(ggo)