-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.cpp
executable file
·645 lines (556 loc) · 20.1 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
#include <iostream>
#include "WPILib.h"
#include "ControlBoard.h"
#include "ControlLoops.h"
#include "CSVReader.h"
#include "RobotState.h"
#include "Task.h"
#include "CommonIncludes.hpp"
#include <fstream>
/**
* The main robot class
* SimpleRobot was chosen because, as its name implies, it is simple.
* All our control loops run at 100Hz using a Notifier and Autonomous
* mode is handled with a separate thread, so other, more complex
* WPIlib robots were deemed unnecessary.
*
* Main Components:
* RobotState represents the current state of the robot - used to share
* data between threads and control loops
*
* ControlBoard handles interactions with the control board and sets
* values in the RobotState
* Only updated when a new packet is recieved from the control board
*
* ControlLoops is a wrapper for all the control loops of each subsystem,
* allows for easy updating of all loops with one call
* Runs on a Notifier which activates at a rate of 100Hz
*
* CSVReader allows frequently-tweaked values to be stored in a CSV file
* which can be easily reloaded (in this case, every time the robot
* is disabled and re-enabled) without having to redeploy code
*
*/
class MainRobot : public SimpleRobot {
public:
/**
* Constructor, initializes all elements of the robot
*/
MainRobot();
/**
* Destructor, frees all allocated space to prevent memory leaks
*/
~MainRobot();
/**
* Executes when Autonomous mode is running
*/
void Autonomous();
/**
* Executes while disabled
*/
void Disabled();
/**
* Starts autonomous thread
* Called in Autonomous()
*/
void RunAutoThread();
/**
* Executes when in Teleop mode
*/
void OperatorControl();
private:
/**
* Performs a one-tube autonomous run, reading values from the CSV
* Is able to compensate for left- vs right-sided autonomous
* by flipping the signs of all the turns
*
* Designed to be run in its own thread to avoid verbose finite
* state machiens
*/
void OneTubeAutonomous();
/**
* Performs a two-tube autonomous run, reading values from the CSV
* Is able to compensate for left- vs right-sided autonomous
* by flipping the signs of all the turns
*
* Designed to be run in its own thread to avoid verbose finite
* state machiens
*/
void TwoTubeAutonomous();
/**
* A quick script to print and log various robot state information
* along with an informative message
* @param msg The message to be included in the output and the log
* entry
*/
void PrintLogPos(const char* msg);
/**
* Logs various information about the robot state
*/
void LogRobotState();
//one vs two tube autonomous
uint8_t m_numTubes;
//left vs right sided autonomous
bool m_isScoringLeft;
//used for checking if the control board has been updated
uint32_t m_prevPacketNumber;
//controls all interactions with the physical control board
ControlBoard* m_controlBoard;
//allows all control loops to be updated from a single place
ControlLoops* m_controlLoops;
//allows for easy reloading of values via a CSV file
CSVReader* m_csvReader;
//robot state information, used as a shared data space between
//threads and control loops
RobotState* m_robot;
//used for running the Autonomous mode in its own thread
Task * m_task;
//local instance of the Driver Station LCD
DriverStationLCD* m_lcd;
//the logfile for teleop/all robot activity
ofstream m_log;
//the logfile for autonomous mode
ofstream m_autolog;
};
/**
* Starts the autonomous mode of the robot
* @param bot The robot whose autonomous mode should be run
* @return the exit code: 0 if successful, 1 if failed
*/
int StartTask(MainRobot *bot){
bot->RunAutoThread();
return 0;
}
MainRobot::MainRobot()
{
printf("Constructing the robot\n");
//init data members
m_prevPacketNumber = 0;
m_csvReader = new CSVReader("RobotConfig.csv");
m_robot= new RobotState(m_csvReader);
m_controlBoard = new ControlBoard(m_robot, m_csvReader);
m_controlLoops = new ControlLoops(m_robot, m_csvReader);
//set up the autonomous Task
m_task = new Task("AutoMode",(FUNCPTR)StartTask);
//get a local instance of the Driver Station LCD
m_lcd = DriverStationLCD::GetInstance();
//initialize the log files
//NOTE: To find the most recent entries in a logfile,
//look for the last occurrence of "Robot Booted" in the file
m_log.open("log.log",fstream::app);
m_log << "Robot Booted" << endl << endl;
m_autolog.open("auto.log",fstream::app);
m_autolog << "Robot Booted" << endl << endl;
//make sure to activate the watchdog lest it bite us
GetWatchdog().SetExpiration(100);
}
MainRobot::~MainRobot()
{
m_log.close();
m_autolog.close();
delete m_controlLoops;
delete m_controlBoard;
delete m_robot;
delete m_csvReader;
delete m_task;
}
void MainRobot::Disabled()
{
//when disabled, make sure the RobotState reflects this,
//but the ControlBoard is still updated to allow for autonomous
//mode selection
m_robot->isDisabled = true;
while(IsDisabled()){
m_controlBoard->UpdateValues();
}
}
void MainRobot::Autonomous()
{
//keep track of starting time to tell when the 15 seconds is up
//and be sure that logfiles and the RobotState reflect the current
//status of the robot
double startTime = m_robot->threadsafeTime();
GetWatchdog().SetEnabled(false);
m_csvReader->ReloadValues();
bool wasDisabled = true;
bool taskRunning = false;
m_robot->isOperatorControl=false;
m_robot->isAutonomous=true;
m_numTubes=(int)m_csvReader->GetValueWithDefault("NUM_AUTO_TUBES",1);
m_isScoringLeft=(bool)m_csvReader->GetValue("IS_SCORING_LEFT");
m_log << "Entering Autonomous Mode" << endl;
m_log.flush();
while (IsAutonomous()) {
m_robot->isDisabled = IsDisabled();
if (!IsDisabled()) {
//Autonomous mode is enabled
if (wasDisabled) {
m_log << "Enabling Autonomous at time " << m_robot->threadsafeTime() << endl;
m_log.flush();
printf("Starting Autonomous Thread\n");
m_robot->Lock();
RobotState::AutonomousState currAutonomous = m_robot->currAutonomous;
m_robot->ResetState();
m_robot->isOperatorControl=false;
m_robot->isAutonomous=true;
m_controlLoops->Reset();
m_csvReader->ReloadValues();
m_robot->currAutonomous=currAutonomous;
//reset the start time
startTime = m_robot->GetTime();
m_robot->Unlock();
//begin the thread
m_task->Start((int)this);
wasDisabled = false;
taskRunning = true;
}
//if the timer has run out, kill the thread
else if ((m_robot->threadsafeTime() - startTime) > 15.0) {
if (taskRunning) {
printf("Killing Autonomous Thread\n");
m_log << "Disabling Autonomous at time " << m_robot->threadsafeTime() << endl << endl;
m_log.flush();
m_robot->Lock();
m_task->Stop();
m_robot->Unlock();
m_robot->ResetState();
taskRunning = false;
}
//ensure that all the motors are set to zero
m_robot->Lock();
m_robot->SetLeftMotor(0.0);
m_robot->SetRightMotor(0.0);
m_robot->SetElevatorMotor(0.0);
m_robot->SetArmMotor(0.0);
m_robot->SetTopRollerMotor(0.0);
m_robot->SetBottomRollerMotor(0.0);
m_robot->controlLoopsOn = false;
m_robot->Unlock();
}
LogRobotState();
}
//the robot is still disabled
else {
//only update the control board when disabled
m_controlBoard->UpdateValues();
//if killing the thread, update the logs
if (!wasDisabled) {
printf("Killing Autonomous Thread\n");
m_log << "Disabling Autonomous at time " << m_robot->threadsafeTime() << endl << endl;
m_log.flush();
// TODO(aschuh): Lock the csvreader first.
if (taskRunning) {
m_robot->Lock();
m_task->Stop();
m_robot->Unlock();
taskRunning = false;
}
}
wasDisabled = true;
}
//don't burn up the processor
Wait(0.01);
//make sure to update any changes in the LCD
m_lcd->UpdateLCD();
}
//thread needs to be killed
//TODO(ebakan): Check if this code is still necessary, when such
//similar code is posted 20 lines above
if (!wasDisabled) {
printf("Killing Autonomous Thread\n");
m_log << "Disabling Autonomous at time " << m_robot->threadsafeTime() << endl << endl;
m_log.flush();
// TODO(aschuh): Lock the csvreader first.
m_robot->Lock();
m_task->Stop();
m_robot->Unlock();
}
}
void MainRobot::PrintLogPos(const char* msg)
{
//key:
//1) Time (seconds)
//2) Assumed X Position (feet)
//3) Assumed Y Position (feet)
//4) Assumed Angle (degrees)
//5) Message
double time=m_robot->threadsafeTime();
double x=MetersToFeet(m_robot->GetAssumedXPos());
double y=MetersToFeet(m_robot->GetAssumedYPos());
double angle=RadiansToDegrees(m_robot->GetAssumedTheta());
m_autolog << time;
m_autolog << ", ";
m_autolog << x;
m_autolog << ", ";
m_autolog << y;
m_autolog << ", ";
m_autolog << angle;
m_autolog << ", ";
m_autolog << msg;
m_autolog << endl;
m_autolog.flush();
printf("%f x: %f y: %f angle: %f %s\n", time, x, y, angle, msg);
}
void MainRobot::LogRobotState()
{
//key:
//1) Time (seconds)
//2) Left Encoder Distance (meters)
//3) Right Encoder Distance (meters)
//4) Gyro Value (radians)
//5) Arm Angle (radians)
//6) Elevator Encoder Height (meters)
//7) High Gear Enabled (boolean)
//8) Assumed X Position (meters)
//9) Assumed Y Position (meters)
//10) Assumed Angle (radians)
m_robot->Lock();
m_log << m_robot->GetTime();
m_log << ", ";
m_log << m_robot->GetLeftDistance();
m_log << ", ";
m_log << m_robot->GetRightDistance();
m_log << ", ";
m_log << m_robot->GetGyroValue();
m_log << ", ";
m_log << m_robot->GetArmAngle();
m_log << ", ";
m_log << m_robot->GetElevatorHeightValue();
m_log << ", ";
m_log << m_robot->isHighGear;
m_log << ", ";
m_log << m_robot->assumed_xpos;
m_log << ", ";
m_log << m_robot->assumed_ypos;
m_log << ", ";
m_log << m_robot->assumed_theta;
m_log << endl;
m_log.flush();
m_robot->Unlock();
}
void MainRobot::OneTubeAutonomous() {
//compensation for turns for scoring on the left or the right side
int turn_compensation_factor = m_isScoringLeft ? 1 : -1;
PrintLogPos("Starting One Tube Autonomous");
m_lcd->PrintfLine(DriverStationLCD::kUser_Line1, "Auto: %05.2f: Initializing",m_robot->threadsafeTime());
//make sure we're in high gear and the gyro is zeroed
//this should already happen but just to make sure
m_robot->Lock();
m_robot->isHighGear = true;
m_robot->ResetGyro();
m_robot->Unlock();
//don't change the arm angle - shouldn't matter, but makes
//it less jerky in a fail situation
m_robot->armAngleDegrees(RadiansToDegrees(m_robot->GetArmAngle()));
//close the claw, roll the rollers in, and wait for the tube
m_robot->closeClaw();
m_robot->grabTube();
m_robot->waitForTube();
printf("%f: Tube in Claw\n", m_robot->threadsafeTime());
//going to the rack
//setting the arm up if it isn't already
printf("%f: Going to the rack\n", m_robot->threadsafeTime());
m_lcd->PrintfLine(DriverStationLCD::kUser_Line1, "Auto: %05.2f: Moving",m_robot->threadsafeTime());
m_robot->driveForwardsFeet(m_csvReader->GetValue("DISTANCE_TO_WALL_FEET"));
m_robot->armAngleDegrees(m_csvReader->GetValue("ARM_UP_ANGLE"));
// Lift the elevator part way
PrintLogPos("Raising the Elevator part way through");
m_lcd->PrintfLine(DriverStationLCD::kUser_Line4, "Auto: %05.2f: Raising Elevator",m_robot->threadsafeTime());
m_robot->waitForDriveFeetLeft(m_csvReader->GetValue("ONE_TUBE_WAIT_FEET"));
m_robot->elevatorHeight(m_csvReader->GetValue("ELEVATOR_TOP_SIDE") + InchesToMeters(2.0));
//wait for us to be there and the elevator to be up
m_robot->waitForElevator();
m_robot->armAngleDegrees(m_csvReader->GetValue("ARM_SCORE_ANGLE"));
m_robot->waitForDrive();
PrintLogPos("At the Goal");
m_lcd->PrintfLine(DriverStationLCD::kUser_Line4, "Auto: %05.2f: At the Goal",m_robot->threadsafeTime());
// Move over a tiny bit to avoid hitting the other bot.
m_robot->turnAngleDegrees(turn_compensation_factor*m_csvReader->GetValue("AUTO_BACKUP_ANGLE_DEGREES"));
// Lower the arm
m_robot->armAngleDegrees(m_csvReader->GetValue("AUTO_ARM_DOWN_ANGLE_DEGREES"));
// Place
m_robot->openClaw();
m_robot->waitForArmWithTimeout(m_csvReader->GetValue("ONE_TUBE_ARM_TIMEOUT_SECONDS"));
// Lower elevator
PrintLogPos("Claw Opened");
m_lcd->PrintfLine(DriverStationLCD::kUser_Line4, "Auto: %05.2f: Claw Opened",m_robot->threadsafeTime());
m_lcd->PrintfLine(DriverStationLCD::kUser_Line5, "Auto: %05.2f: One Tube Time",m_robot->threadsafeTime());
m_robot->elevatorHeight(m_csvReader->GetValue("ELEVATOR_TOP_SIDE")-m_csvReader->GetValue("ONE_TUBE_ELEVATOR_LOWER_METERS"));
m_robot->waitForElevator();
// Stow arm and book it out of there, resetting the bot.
m_robot->armAngleDegrees(m_csvReader->GetValue("ARM_UP_ANGLE"));
//m_robot->driveForwardsFeet(-(m_csvReader->GetValue("DISTANCE_TO_WALL_FEET")));
PrintLogPos("Driving Backwards");
m_lcd->PrintfLine(DriverStationLCD::kUser_Line4, "Auto: %05.2f: Driving Backwards",m_robot->threadsafeTime());
//TODO(ebakan): see if some of these redundant statements can be
//eliminated
//back up, close the claw, zero the elevator
m_robot->driveForwardsFeet(-(m_csvReader->GetValue("DISTANCE_TO_WALL_FEET")-m_csvReader->GetValue("AUTO_BACKUP_OFFSET_FEET")));
m_robot->closeClaw();
m_robot->waitForArm();
m_robot->elevatorHeight(m_csvReader->GetValue("ELEVATOR_GROUND"));
m_robot->waitForDrive();
m_robot->elevatorHeight(m_csvReader->GetValue("ELEVATOR_GROUND"));
m_robot->waitForElevator();
// Get ready for the next one.
m_robot->ignoreTube();
m_robot->armAngleDegrees(m_csvReader->GetValue("ARM_DOWN_ANGLE"));
m_robot->elevatorHeight(m_csvReader->GetValue("ELEVATOR_GROUND"));
m_robot->waitForElevator();
PrintLogPos("One Tube Done");
m_lcd->PrintfLine(DriverStationLCD::kUser_Line4, "Auto: %05.2f: One Tube Done",m_robot->threadsafeTime());
}
void MainRobot::TwoTubeAutonomous() {
//similar compensation factor as above
int turn_compensation_factor = m_isScoringLeft ? 1 : -1;
//execute the one tube autonomous first
OneTubeAutonomous();
PrintLogPos("Initiating two tube autonomous");
m_lcd->PrintfLine(DriverStationLCD::kUser_Line4, "Auto: %05.2f: Initiating Two Tube",m_robot->threadsafeTime());
// Close the claw. Don't suck in until aimed at the tube so you grab it centered.
m_robot->closeClaw();
// turn towards the tube.
PrintLogPos("Turning 90 Degrees");
m_lcd->PrintfLine(DriverStationLCD::kUser_Line4, "Auto: %05.2f: Turning 90 degrees",m_robot->threadsafeTime());
m_robot->turnAngleDegrees(turn_compensation_factor*m_csvReader->GetValue("TWO_TUBE_TUBE_TURN_ANGLE_DEGREES"));
m_robot->waitForDriveWithinDegrees(2.0);
Wait(0.1);
m_robot->waitForDriveWithinDegrees(2.0);
m_robot->grabTube();
PrintLogPos("Done Turning 90 Degrees");
m_lcd->PrintfLine(DriverStationLCD::kUser_Line4, "Auto: %05.2f: Turn Done",m_robot->threadsafeTime());
// drive forwards and then wait until drive is
// done and tube is grabbed
m_robot->driveForwardsFeet(m_csvReader->GetValue("TWO_TUBE_TUBE_GRAB_DISTANCE_FEET"));
int tubeCount = 0;
int numTubeCountsToCheck=5;
while (tubeCount<numTubeCountsToCheck) {
if(m_robot->hasTube())
tubeCount++;
else
tubeCount=0;
Wait(m_robot->dt);
}
m_robot->armAngleDegrees(m_csvReader->GetValue("ARM_UP_ANGLE"));
PrintLogPos("Done driving forwards and got tube");
m_lcd->PrintfLine(DriverStationLCD::kUser_Line4, "Auto: %05.2f: Got Tube",m_robot->threadsafeTime());
//backing up to original position
m_robot->driveForwardsFeet(-m_csvReader->GetValue("TWO_TUBE_TUBE_GRAB_DISTANCE_FEET"));
m_robot->waitForDrive();
PrintLogPos("Done backing up");
m_lcd->PrintfLine(DriverStationLCD::kUser_Line4, "Auto: %05.2f: Backed Up",m_robot->threadsafeTime());
// Turn towards the peg from facing the tube.
// Working number. Hits side of peg slightly.
m_robot->turnAngleDegrees(-turn_compensation_factor*m_csvReader->GetValue("TWO_TUBE_PEG_ANGLE_DEGREES"));
m_robot->waitForDriveWithinDegrees(1.3);
PrintLogPos("Done turning back");
// Make sure this isn't an overshoot. That would be really bad.
Wait(0.2);
m_robot->waitForDriveWithinDegrees(1.3);
PrintLogPos("Done turning back really");
m_lcd->PrintfLine(DriverStationLCD::kUser_Line4, "Auto: %05.2f: Lined Up",m_robot->threadsafeTime());
//drive towards the peg
m_robot->driveForwardsFeet(m_csvReader->GetValue("TWO_TUBE_PEG_DISTANCE_FEET"));
m_robot->waitForDriveFeetLeft(m_csvReader->GetValue("TWO_TUBE_WAIT_FEET"));
PrintLogPos("Almost there");
m_lcd->PrintfLine(DriverStationLCD::kUser_Line4, "Auto: %05.2f: Raising Elevator",m_robot->threadsafeTime());
//m_robot->elevatorHeight(m_csvReader->GetValue("ELEVATOR_TOP_MIDDLE"));
m_robot->elevatorHeight(m_csvReader->GetValue("ELEVATOR_TOP_SIDE") + InchesToMeters(2.0));
// Get there and settle down.
m_robot->waitForElevator();
m_robot->armAngleDegrees(m_csvReader->GetValue("ARM_SCORE_ANGLE"));
m_robot->waitForDrive();
// TODO(aschuh): Add the rest back in when it works.
PrintLogPos("Done Driving Auto Mode");
m_lcd->PrintfLine(DriverStationLCD::kUser_Line4, "Auto: %05.2f: Ready At Goal",m_robot->threadsafeTime());
// Lower the arm
m_robot->armAngleDegrees(m_csvReader->GetValue("AUTO_ARM_DOWN_ANGLE_DEGREES"));
m_robot->waitForArmWithTimeout(m_csvReader->GetValue("TWO_TUBE_ARM_TIMEOUT_SECONDS"));
PrintLogPos("Arm Down");
// Place
m_robot->openClaw();
m_lcd->PrintfLine(DriverStationLCD::kUser_Line4, "Auto: %05.2f: Tube Placed",m_robot->threadsafeTime());
m_lcd->PrintfLine(DriverStationLCD::kUser_Line5, "Auto: %05.2f: Two Tube Time",m_robot->threadsafeTime());
// Lower elevator
m_robot->elevatorHeight(m_csvReader->GetValue("ELEVATOR_TOP_MIDDLE")-m_csvReader->GetValue("TWO_TUBE_ELEVATOR_LOWER_METERS"));
m_robot->waitForElevator();
PrintLogPos("Elevator Placed");
// Stow arm and book it out of there, resetting the bot.
m_robot->armAngleDegrees(m_csvReader->GetValue("ARM_UP_ANGLE"));
//m_robot->driveForwardsFeet(-(m_csvReader->GetValue("DISTANCE_TO_WALL_FEET")+0));
m_robot->driveForwardsFeet(-m_csvReader->GetValue("TWO_TUBE_BACKUP_FEET"));
m_robot->closeClaw();
m_robot->waitForArm();
PrintLogPos("Arm Stowed");
m_robot->elevatorHeight(m_csvReader->GetValue("ELEVATOR_GROUND"));
m_robot->waitForDrive();
PrintLogPos("Drive Done");
m_robot->waitForElevator();
PrintLogPos("Stopped Moving. Auto mode officially done");
m_lcd->PrintfLine(DriverStationLCD::kUser_Line4, "Auto: %05.2f: Auto Mode Done",m_robot->threadsafeTime());
}
void MainRobot::RunAutoThread() {
//executes a different autonomous based on the current user
//selection
if(m_robot->currAutonomous==RobotState::kOneTube)
OneTubeAutonomous();
else if(m_robot->currAutonomous==RobotState::kTwoTubeLeft)
{
m_isScoringLeft=true;
TwoTubeAutonomous();
}
else if(m_robot->currAutonomous==RobotState::kTwoTubeRight)
{
m_isScoringLeft=false;
TwoTubeAutonomous();
}
else {
m_lcd->Printf(DriverStationLCD::kUser_Line1,1,"No Autonomous Selected");
}
}
void MainRobot::OperatorControl()
{
// TODO(aschuh): Provide reset hooks so that things can be reset.
m_log << "Entering Operator Control" << endl;
m_log.flush();
GetWatchdog().SetEnabled(true);
m_csvReader->ReloadValues();
m_robot->ResetState();
m_controlLoops->Reset();
m_robot->isOperatorControl=true;
m_robot->isAutonomous=false;
printf("Op Control\n");
bool disabledState = IsDisabled();
while (IsOperatorControl()) {
m_robot->isDisabled = IsDisabled();
// enabled
if(!IsDisabled()) {
LogRobotState();
}
//disabled
//only updated when a new packet is received from the
//control board
if(m_ds->GetPacketNumber() != m_prevPacketNumber) {
m_prevPacketNumber=m_ds->GetPacketNumber();
if (disabledState == true && IsDisabled() == false) {
m_controlBoard->ResetState();
m_csvReader->ReloadValues();
m_robot->ResetState();
m_robot->isOperatorControl=true;
m_robot->isAutonomous=false;
m_controlLoops->Reset();
m_log << "Enabling Teleop at time " << m_robot->threadsafeTime() << endl;
} else if (disabledState == false && IsDisabled() == true) {
m_log << "Disabling Teleop at time " << m_robot->threadsafeTime() << endl << endl;
}
disabledState = IsDisabled();
m_controlBoard->UpdateValues();
}
//printf("Feeding...\n");
GetWatchdog().Feed();
Wait(0.001);
}
printf("Done with operator control\n");
}
//start the actual program
START_ROBOT_CLASS(MainRobot);