-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmynn.m
383 lines (255 loc) · 13.8 KB
/
mynn.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
% ===== Inputs ===== %
train_set_inputs = readMNISTImages('train-images.idx3-ubyte')';
train_labels = readMNISTLabels('train-labels.idx1-ubyte');
train_set_goals = labels2goals(train_labels, 10);
test_set_inputs = readMNISTImages('t10k-images.idx3-ubyte')';
test_labels = readMNISTLabels('t10k-labels.idx1-ubyte');
test_set_goals = labels2goals(test_labels, 10);
hidden_layers_sizes = [32 16];
activation_function = 'tanh';
number_of_epochs = 10;
learning_rate = 0.01;
batch_size = 1;
% ===== Initializations ===== %
[~, number_of_hidden_layers] = size(hidden_layers_sizes);
[number_of_examples, input_layer_size] = size(train_set_inputs);
[~, output_layer_size] = size(train_set_goals);
[number_of_tests, ~] = size(test_set_inputs);
weights_and_biases = cell(number_of_hidden_layers+1, 1);
desired_weights_and_biases = cell(number_of_hidden_layers+1, 1);
for l=1:number_of_hidden_layers+1
desired_weights_and_biases(l) = {0};
end
% randomize weights with gaussian (mean = 0, standard deviation = 1)
% random_number_of_layer = random_number / number_of_neurons_in_layer
rng(345); % set seed for reproducibility
rand_multiplier = 1 / input_layer_size;
weights_and_biases(1) = {rand_multiplier * normrnd(0, 1, [hidden_layers_sizes(1), input_layer_size+1])}; % weights and biases between input layer and first hidden layer, +1 for the bias, matrix: next_layer_size x current_layer_size
for i=2:number_of_hidden_layers
rand_multiplier = 1 / hidden_layers_sizes(i-1);
weights_and_biases(i) = {rand_multiplier * normrnd(0, 1, [hidden_layers_sizes(i), hidden_layers_sizes(i-1)+1])}; % weights and biases between hidden layers, +1 for the bias, matrix: next_layer_size x current_layer_size
end
rand_multiplier = 1 / hidden_layers_sizes(end);
weights_and_biases(end) = {rand_multiplier * normrnd(0, 1, [output_layer_size, hidden_layers_sizes(end)+1])}; % weights and biases between last hidden layer and output layer, +1 for the bias, matrix: next_layer_size x current_layer_size
% ===== Training ===== %
weighted_outputs = cell(number_of_hidden_layers + 1, 1); % z = w*a + ... + b
squishified_weighted_outputs = cell(number_of_hidden_layers + 1, 1); % a = phi(z)
training_errors = ones(number_of_epochs, 1);
testing_errors = ones(number_of_epochs, 1);
training_precisions = ones(number_of_epochs, 1);
testing_precisions = ones(number_of_epochs, 1);
fprintf(1,'Training...\n');
start_time = cputime;
for epoch=1:number_of_epochs
sum_train_errors = 0;
sum_test_errors = 0;
% Shuffle train_set_inputs with train_set_goals %
shuffler = randperm(number_of_examples);
train_set_inputs = train_set_inputs(shuffler, :);
train_set_goals = train_set_goals(shuffler, :);
for p=1:number_of_examples
current_example_with_bias = [train_set_inputs(p, :) 1]';
current_goals = train_set_goals(p, :)';
% Feed Forward (Calculation of neuron outputs) %
z = cell2mat(weights_and_biases(1)) * current_example_with_bias;
weighted_outputs(1) = {z};
squishified_weighted_outputs(1) = {phi(z, activation_function)}; % outputs of neurons from the first hidden layer
for l=2:number_of_hidden_layers+1
z = cell2mat(weights_and_biases(l)) * [cell2mat(squishified_weighted_outputs(l-1))' 1]';
weighted_outputs(l) = {z};
squishified_weighted_outputs(l) = {phi(z, activation_function)};
end
error = current_goals - cell2mat(squishified_weighted_outputs(end));
sum_train_errors = sum_train_errors + sumsqr(error);
% Back propagation (Calculation of desired weights) %
sigma = phi_d(cell2mat(weighted_outputs(end)), activation_function);
alpha = cell2mat(squishified_weighted_outputs(end-1));
delta = sigma .* error;
delta_scaled = delta(:, ones(hidden_layers_sizes(end) + 1, 1)); % scaling for every neuron of the last hidden layer
alpha_scaled = [alpha(:, ones(output_layer_size, 1))' ones(output_layer_size, 1)]; % scaling for every neuron of the output layer
% accumulate weights of current batch
desired_weights_and_biases(end) = {cell2mat(desired_weights_and_biases(end)) + delta_scaled .* alpha_scaled};
for l=number_of_hidden_layers:-1:1
sigma = phi_d(cell2mat(weighted_outputs(l)), activation_function);
if l>1
alpha = cell2mat(squishified_weighted_outputs(l-1));
else % previous layer is input layer
alpha = current_example_with_bias;
end
next_layer_weights_and_biases = cell2mat(weights_and_biases(l+1));
next_layer_weights = next_layer_weights_and_biases(:, 1:hidden_layers_sizes(l)); % crop the last column (biases)
previous_delta_rescaled = delta(:, ones(1, hidden_layers_sizes(l)));
next_layer_error = sum(next_layer_weights' .* previous_delta_rescaled', 2);
delta = sigma .* next_layer_error;
if l>1
delta_scaled = delta(:, ones(hidden_layers_sizes(l-1) + 1, 1)); % scaling for every neuron of the current hidden layer, +1 for bias
alpha_scaled = [alpha(:, ones(hidden_layers_sizes(l), 1))' ones(hidden_layers_sizes(l), 1)]; % scaling for every neuron of the next hidden layer
else % previous layer is input layer
delta_scaled = delta(:, ones(input_layer_size + 1, 1)); % scaling for every neuron of the input layer
alpha_scaled = alpha(:, ones(hidden_layers_sizes(l), 1))'; % scaling for every neuron of the next hidden layer
end
% accumulate weights of current batch
desired_weights_and_biases(l) = {cell2mat(desired_weights_and_biases(l)) + delta_scaled .* alpha_scaled};
end
% Update weights if we have reached the end of a batch or the end of inputs%
if (mod(p-1, batch_size) == batch_size -1 || p==number_of_examples)
for k=1:number_of_hidden_layers+1
weights_and_biases(k) = {cell2mat(weights_and_biases(k)) + learning_rate .* cell2mat(desired_weights_and_biases(k))/batch_size};
desired_weights_and_biases(k) = {0};
end
end
end
training_errors(epoch) = sum_train_errors / number_of_examples;
% ===== Testing ===== %
% Calculate precision for train set
corrects = 0;
for p=1:number_of_examples
current_test_with_bias = [train_set_inputs(p, :) 1]';
current_goals = train_set_goals(p, :)';
% Feed Forward (Calculation of neuron outputs) %
current_weighted_outputs = phi(cell2mat(weights_and_biases(1)) * current_test_with_bias, activation_function); % outputs of neurons from the first hidden layer
for l=2:number_of_hidden_layers+1
current_weighted_outputs = phi(cell2mat(weights_and_biases(l)) * [current_weighted_outputs; 1], activation_function);
end
[~, max_neuron_id] = max(current_weighted_outputs);
[~, goal_neuron] = max(current_goals);
if max_neuron_id == goal_neuron
corrects = corrects + 1;
end
end
training_precisions(epoch) = corrects/number_of_examples;
% Calculate precision and error for test set
corrects = 0;
for p=1:number_of_tests
current_test_with_bias = [test_set_inputs(p, :) 1]';
current_goals = test_set_goals(p, :)';
% Feed Forward (Calculation of neuron outputs) %
current_weighted_outputs = phi(cell2mat(weights_and_biases(1)) * current_test_with_bias, activation_function); % outputs of neurons from the first hidden layer
for l=2:number_of_hidden_layers+1
current_weighted_outputs = phi(cell2mat(weights_and_biases(l)) * [current_weighted_outputs; 1], activation_function);
end
[~, max_neuron_id] = max(current_weighted_outputs);
[~, goal_neuron] = max(current_goals);
if max_neuron_id == goal_neuron
corrects = corrects + 1;
end
error = current_goals - current_weighted_outputs;
sum_test_errors = sum_test_errors + sumsqr(error);
end
testing_errors(epoch) = sum_test_errors / number_of_tests;
testing_precisions(epoch) = corrects/number_of_tests;
%fprintf(1,'Epoch %g\n', epoch);
%fprintf(1,'Train Error: %g\n', training_errors(epoch));
%fprintf(1,'Train Precision: %g / %g (%g%%)\n', corrects, number_of_examples, 100 * training_precisions(epoch));
%fprintf(1,'Test Error: %g\n', testing_errors(epoch));
%fprintf(1,'Test Precision: %g / %g (%g%%)\n', corrects, number_of_tests, 100 * testing_precisions(epoch));
end
training_time = cputime - start_time;
fprintf(1,'Seconds: %g\n', training_time);
fprintf(1,'Precision: %g / %g (%g%%)\n', corrects, number_of_tests, 100 * testing_precisions(end));
% ===== Plot test and train precision per epoch ===== %
layers_text = num2str(input_layer_size);
for l=1:number_of_hidden_layers
layers_text = [layers_text, 'x', num2str(hidden_layers_sizes(l))];
end
layers_text = [layers_text, 'x', num2str(output_layer_size)];
figure_title = ['nn with: layers ', layers_text, ', learning rate = ', num2str(learning_rate), ', batch size = ', num2str(batch_size), ', activation function = ', activation_function];
figure
plot(1:number_of_epochs, training_precisions);
hold on
plot(1:number_of_epochs, testing_precisions);
legend({'Train Precision','Test Precision'},'Location','southwest')
title(['Precision curves for ', figure_title]);
hold off
% ===== Plot test and train error per epoch ===== %
figure
plot(1:number_of_epochs, training_errors);
hold on
plot(1:number_of_epochs, testing_errors);
legend({'Train Error','Test Error'},'Location','southwest')
title(['Error curves for ', figure_title]);
hold off
% ===== Save the model to a file ===== %
save('nn_model.mat', 'train_set_inputs', 'train_set_goals', ...
'test_set_inputs', 'test_set_goals', 'hidden_layers_sizes', ...
'number_of_epochs', 'learning_rate', 'batch_size', ...
'activation_function', 'weights_and_biases', 'number_of_tests', ...
'training_errors', 'training_precisions', 'testing_errors', ...
'testing_precisions', 'output_layer_size', 'input_layer_size', ...
'number_of_hidden_layers');
% ===== Testing and showing some wrong predictions ===== %
corrects = 0;
wrongs_to_show = 15;
wrongs_shown = 0;
wrongs = cell(wrongs_to_show);
wrong_labels = cell(wrongs_to_show);
for p=1:number_of_tests
current_test_with_bias = [test_set_inputs(p, :) 1]';
current_goals = test_set_goals(p, :)';
% Feed Forward (Calculation of neuron outputs) %
current_weighted_outputs = phi(cell2mat(weights_and_biases(1)) * current_test_with_bias, activation_function); % outputs of neurons from the first hidden layer
for l=2:number_of_hidden_layers+1
current_weighted_outputs = phi(cell2mat(weights_and_biases(l)) * [current_weighted_outputs; 1], activation_function);
end
[~, max_neuron_id] = max(current_weighted_outputs);
[~, goal_neuron] = max(current_goals);
if max_neuron_id == goal_neuron
corrects = corrects + 1;
else
% Show image
if wrongs_shown < wrongs_to_show
wrongs_shown = wrongs_shown + 1;
wrongs(wrongs_shown) = {reshape(test_set_inputs(p, :), [28, 28])};
wrong_labels(wrongs_shown) = {['Found: ', num2str(max_neuron_id - 1), ' Was: ', num2str(goal_neuron - 1)]};
end
end
end
% Show images with some of the wrongs
figure
for wrong_id=1:wrongs_to_show
subplot(ceil(wrongs_to_show/5),5,wrong_id);
imshow(cell2mat(wrongs(wrong_id)));
title(cell2mat(wrong_labels(wrong_id)));
end
% ===== Show how affected every neuron is from the input (using weights) ===== %
weights_from_all_hidden_layers = 1;
for l=1:number_of_hidden_layers
figure
for n=1:hidden_layers_sizes(l)
neuron_weights = cell2mat(weights_and_biases(l));
neuron_weights = neuron_weights(n,1:end-1);
neuron_weights = neuron_weights * weights_from_all_hidden_layers;
neuron_weights = rescale(neuron_weights, 0, 1); % rescale to fit in range [0,1] to show it
subplot(ceil(hidden_layers_sizes(l)/8),8,n);
imshow(reshape(neuron_weights, [28,28]));
title(['L', num2str(l),' neuron ', num2str(n)]);
end
% Multiply with the weights of this layer, so that the new matrix will
% have number of columns equal to input_layer_size
current_layer_weights = cell2mat(weights_and_biases(l));
current_layer_weights = current_layer_weights(:,1:end-1); % crop the bias
weights_from_all_hidden_layers = current_layer_weights * weights_from_all_hidden_layers;
end
% show ouput layer
figure
for n=1:output_layer_size
neuron_weights = cell2mat(weights_and_biases(end));
neuron_weights = neuron_weights(n,1:end-1); % crop the bias
neuron_weights = neuron_weights * weights_from_all_hidden_layers;
neuron_weights = rescale(neuron_weights, 0, 1); % rescale to fit in range [0,1] to show it
subplot(ceil(output_layer_size/5),5,n);
imshow(reshape(neuron_weights, [28,28]));
title(['Output neuron ', num2str(n)]);
end
% ===== Test custom input ===== %
number = rgb2gray(imread('num.jpg'));
current_test_with_bias = [reshape(rescale(double(number),0,1), [1, 28*28]) 1]';
% Feed Forward (Calculation of neuron outputs) %
current_weighted_outputs = phi(cell2mat(weights_and_biases(1)) * current_test_with_bias, activation_function); % outputs of neurons from the first hidden layer
for l=2:number_of_hidden_layers+1
current_weighted_outputs = phi(cell2mat(weights_and_biases(l)) * [current_weighted_outputs; 1], activation_function);
end
[~, max_neuron_id] = max(current_weighted_outputs);
figure
imshow(number);
title(['Found: ', num2str(max_neuron_id - 1)]);