-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathadmix.py
51 lines (43 loc) · 2.44 KB
/
admix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
from ..utils import *
from ..gradient.mifgsm import MIFGSM
class Admix(MIFGSM):
"""
Admix Attack
'Admix: Enhancing the Transferability of Adversarial Attacks (ICCV 2021)'(https://arxiv.org/abs/2102.00436)
Arguments:
model_name (str): the name of surrogate model for attack.
epsilon (float): the perturbation budget.
alpha (float): the step size.
epoch (int): the number of iterations.
decay (float): the decay factor for momentum calculation.
num_scale (int): the number of scaled copies in each iteration.
num_admix (int): the number of admixed images in each iteration.
admix_strength (float): the strength of admixed images.
targeted (bool): targeted/untargeted attack.
random_start (bool): whether using random initialization for delta.
norm (str): the norm of perturbation, l2/linfty.
loss (str): the loss function.
device (torch.device): the device for data. If it is None, the device would be same as model
Official arguments:
epsilon=16/255, alpha=epsilon/epoch=1.6/255, epoch=10, decay=1., num_scale=5, num_admix=3, admix_strength=0.2
Example script:
python main.py --input_dir ./path/to/data --output_dir adv_data/admix/resnet18 --attack admix --model=resnet18
python main.py --input_dir ./path/to/data --output_dir adv_data/admix/resnet18 --eval
"""
def __init__(self, model_name, epsilon=16/255, alpha=1.6/255, epoch=10, decay=1., num_scale=5, num_admix=3, admix_strength=0.2, targeted=False, random_start=False, norm='linfty', loss='crossentropy', device=None, attack='Admix', **kwargs):
super().__init__(model_name, epsilon, alpha, epoch, decay, targeted, random_start, norm, loss, device, attack)
self.num_scale = num_scale
self.num_admix = num_admix
self.admix_strength = admix_strength
def transform(self, x, **kwargs):
"""
Admix the input for Admix Attack
"""
admix_images = torch.concat([(x + self.admix_strength * x[torch.randperm(x.size(0))].detach()) for _ in range(self.num_admix)], dim=0)
return torch.concat([admix_images / (2 ** i) for i in range(self.num_scale)])
def get_loss(self, logits, label):
"""
Calculate the loss
"""
return -self.loss(logits, label.repeat(self.num_scale*self.num_admix)) if self.targeted else self.loss(logits, label.repeat(self.num_scale*self.num_admix))