-
Notifications
You must be signed in to change notification settings - Fork 81
/
Copy pathTop tweeters and timeline for particular hashtag.R
50 lines (40 loc) · 1.98 KB
/
Top tweeters and timeline for particular hashtag.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# Top tweeters for a particular hashtag (Barplot)
# Timeline for particular tweet hourwise over a period of time (ggplot)
library(ggplot2)
tweets <- list()
dates <- paste("2016-09-",1:3,sep="") #SUGGESTION: Modify these dates of upto 7 days before running this program
for (i in 2:length(dates)) {
print(paste(dates[i-1], dates[i]))
tweets <- c(tweets, searchTwitter("#picture", since=dates[i-1], until=dates[i], n=1000))
}
# as.Date(as.Date(Sys.Date()-7):as.Date(Sys.Date()), origin="1970-01-01") //general view
# Convert the list to a data frame
tweets <- twListToDF(tweets)
tweets <- unique(tweets)
# To ensure accuracy, there should be no more than 1500 tweets in a single day.
# If there are 1500 on any single day, then you're truncating that day's
#tweets, and you'll need to try to get ROAuth (below) working.
tweets$date <- format(tweets$created, format="%Y-%m-%d")
table(tweets$date)
# @sciencestream is a spambot that's RT'ing everything on the #ISMB tag.
#Get rid of those.
#tweets <- tweets[which(tweets$screenName!="sciencestream"), ]
# Make a table of the number of tweets per user
d <- as.data.frame(table(tweets$screenName))
d <- d[order(d$Freq, decreasing=T), ] #descending order of tweeters according to frequency of tweets
names(d) <- c("User","Tweets")
head(d)
# Plot the table above for the top 20
barplot(head(d$Tweets, 20), names=head(d$User, 20), horiz=T, las=1, main="Top 20: Tweets per User", col=1)
# Plot the frequency of tweets over time in one hour windows
# Modified from http://michaelbommarito.com/2011/03/12/a-quick-look-at-march11-saudi-tweets/
minutes <- 60
ggplot(data=tweets, aes(x=created)) +
geom_histogram(aes(fill=..count..), binwidth=60*minutes) +
scale_x_datetime("Date") +
scale_y_continuous("Frequency")
#For making a (monstrous):O line plot instead:
#ggplot(data=tweets, aes(x=created)) +
# geom_area(aes(y=..count..), stat="bin") +
# scale_x_datetime("Date") +
# scale_y_continuous("Frequency")