-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy patheval.py
executable file
·835 lines (753 loc) · 42.8 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
#!/usr/bin/env python3
# Code from CoNLL 2018 UD shared task updated for evaluation of enhanced
# dependencies in IWPT 2020 shared task.
# -- read DEPS, split on '|', compute overlap
# New metrics ELAS and EULAS.
# Gosse Bouma
# New option --enhancements can switch off evaluation of certain types of
# enhancements: default --enhancements 0 ... evaluate all enhancement types
# 1 ... no gapping; 2 ... no coord shared parents; 3 ... no coord shared dependents
# 4 ... no xsubj (control verbs); 5 ... no relative clauses; 6 ... no case info in deprels;
# combinations: 12 ... both 1 and 2 apply
# Compatible with Python 2.7 and 3.2+, can be used either as a module
# or a standalone executable.
#
# Copyright 2017, 2018 Institute of Formal and Applied Linguistics (UFAL),
# Faculty of Mathematics and Physics, Charles University, Czech Republic.
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
#
# Authors: Milan Straka, Martin Popel <[email protected]>
#
# Changelog:
# - [12 Apr 2018] Version 0.9: Initial release.
# - [19 Apr 2018] Version 1.0: Fix bug in MLAS (duplicate entries in functional_children).
# Add --counts option.
# - [02 May 2018] Version 1.1: When removing spaces to match gold and system characters,
# consider all Unicode characters of category Zs instead of
# just ASCII space.
# - [25 Jun 2018] Version 1.2: Use python3 in the she-bang (instead of python).
# In Python2, make the whole computation use `unicode` strings.
# Command line usage
# ------------------
# eval.py [-v] [-c] gold_conllu_file system_conllu_file
#
# - if no -v is given, only the official IWPT 2020 Shared Task evaluation metrics
# are printed
# - if -v is given, more metrics are printed (as precision, recall, F1 score,
# and in case the metric is computed on aligned words also accuracy on these):
# - Tokens: how well do the gold tokens match system tokens
# - Sentences: how well do the gold sentences match system sentences
# - Words: how well can the gold words be aligned to system words
# - UPOS: using aligned words, how well does UPOS match
# - XPOS: using aligned words, how well does XPOS match
# - UFeats: using aligned words, how well does universal FEATS match
# - AllTags: using aligned words, how well does UPOS+XPOS+FEATS match
# - Lemmas: using aligned words, how well does LEMMA match
# - UAS: using aligned words, how well does HEAD match
# - LAS: using aligned words, how well does HEAD+DEPREL(ignoring subtypes) match
# - CLAS: using aligned words with content DEPREL, how well does
# HEAD+DEPREL(ignoring subtypes) match
# - MLAS: using aligned words with content DEPREL, how well does
# HEAD+DEPREL(ignoring subtypes)+UPOS+UFEATS+FunctionalChildren(DEPREL+UPOS+UFEATS) match
# - BLEX: using aligned words with content DEPREL, how well does
# HEAD+DEPREL(ignoring subtypes)+LEMMAS match
# - if -c is given, raw counts of correct/gold_total/system_total/aligned words are printed
# instead of precision/recall/F1/AlignedAccuracy for all metrics.
# API usage
# ---------
# - load_conllu(file)
# - loads CoNLL-U file from given file object to an internal representation
# - the file object should return str in both Python 2 and Python 3
# - raises UDError exception if the given file cannot be loaded
# - evaluate(gold_ud, system_ud)
# - evaluate the given gold and system CoNLL-U files (loaded with load_conllu)
# - raises UDError if the concatenated tokens of gold and system file do not match
# - returns a dictionary with the metrics described above, each metric having
# three fields: precision, recall and f1
# Description of token matching
# -----------------------------
# In order to match tokens of gold file and system file, we consider the text
# resulting from concatenation of gold tokens and text resulting from
# concatenation of system tokens. These texts should match -- if they do not,
# the evaluation fails.
#
# If the texts do match, every token is represented as a range in this original
# text, and tokens are equal only if their range is the same.
# Description of word matching
# ----------------------------
# When matching words of gold file and system file, we first match the tokens.
# The words which are also tokens are matched as tokens, but words in multi-word
# tokens have to be handled differently.
#
# To handle multi-word tokens, we start by finding "multi-word spans".
# Multi-word span is a span in the original text such that
# - it contains at least one multi-word token
# - all multi-word tokens in the span (considering both gold and system ones)
# are completely inside the span (i.e., they do not "stick out")
# - the multi-word span is as small as possible
#
# For every multi-word span, we align the gold and system words completely
# inside this span using LCS on their FORMs. The words not intersecting
# (even partially) any multi-word span are then aligned as tokens.
from __future__ import division
from __future__ import print_function
import argparse
import io
import sys
import unicodedata
import unittest
# CoNLL-U column names
ID, FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, MISC = range(10)
# Content and functional relations
CONTENT_DEPRELS = {
"nsubj", "obj", "iobj", "csubj", "ccomp", "xcomp", "obl", "vocative",
"expl", "dislocated", "advcl", "advmod", "discourse", "nmod", "appos",
"nummod", "acl", "amod", "conj", "fixed", "flat", "compound", "list",
"parataxis", "orphan", "goeswith", "reparandum", "root", "dep"
}
FUNCTIONAL_DEPRELS = {
"aux", "cop", "mark", "det", "clf", "case", "cc"
}
UNIVERSAL_FEATURES = {
"PronType", "NumType", "Poss", "Reflex", "Foreign", "Abbr", "Gender",
"Animacy", "Number", "Case", "Definite", "Degree", "VerbForm", "Mood",
"Tense", "Aspect", "Voice", "Evident", "Polarity", "Person", "Polite"
}
# UD Error is used when raising exceptions in this module
class UDError(Exception):
pass
# Conversion methods handling `str` <-> `unicode` conversions in Python2
def _decode(text):
return text if sys.version_info[0] >= 3 or not isinstance(text, str) else text.decode("utf-8")
def _encode(text):
return text if sys.version_info[0] >= 3 or not isinstance(text, unicode) else text.encode("utf-8")
CASE_DEPRELS = {'obl','nmod','conj','advcl'}
UNIVERSAL_DEPREL_EXTENSIONS = {'pass','relcl','xsubj'}
# Modify the set of deps produced by system to be in accordance with gold treebank type.
# Return a (filtered) list of (hd, dependency_path) tuples.
def process_enhanced_deps(deps) :
edeps = []
if deps != '' and deps != '_':
for edep in deps.split('|') :
(hd, path) = edep.split(':', 1)
steps = path.split('>') # collapsing empty nodes gives rise to paths like this : 3:conj:en>obl:voor
edeps.append((hd,steps)) # (3,['conj:en','obj:voor'])
return edeps
# Load given CoNLL-U file into internal representation.
# The file parameter is the open file object.
# The path parameter is needed only for diagnostic messages.
def load_conllu(file, path, treebank_type):
# Internal representation classes
class UDRepresentation:
def __init__(self):
# Characters of all the tokens in the whole file.
# Whitespace between tokens is not included.
self.characters = []
# List of UDSpan instances with start&end indices into `characters`.
self.tokens = []
# List of UDWord instances.
self.words = []
# List of UDSpan instances with start&end indices into `characters`.
self.sentences = []
# File path may be needed in error messages.
self.path = ''
class UDSpan:
def __init__(self, start, end, line):
self.start = start
# Note that self.end marks the first position **after the end** of span,
# so we can use characters[start:end] or range(start, end).
self.end = end
# Line number (1-based) will be useful if we need to report an error later.
self.line = line
class UDWord:
def __init__(self, span, columns, is_multiword):
# Span of this word (or MWT, see below) within ud_representation.characters.
self.span = span
# 10 columns of the CoNLL-U file: ID, FORM, LEMMA,...
self.columns = columns
# is_multiword==True means that this word is part of a multi-word token.
# In that case, self.span marks the span of the whole multi-word token.
self.is_multiword = is_multiword
# Reference to the UDWord instance representing the HEAD (or None if root).
self.parent = None
# List of references to UDWord instances representing functional-deprel children.
self.functional_children = []
# Only consider universal FEATS.
self.columns[FEATS] = "|".join(sorted(feat for feat in columns[FEATS].split("|")
if feat.split("=", 1)[0] in UNIVERSAL_FEATURES))
# Let's ignore language-specific deprel subtypes.
self.columns[DEPREL] = columns[DEPREL].split(":")[0]
# Precompute which deprels are CONTENT_DEPRELS and which FUNCTIONAL_DEPRELS
self.is_content_deprel = self.columns[DEPREL] in CONTENT_DEPRELS
self.is_functional_deprel = self.columns[DEPREL] in FUNCTIONAL_DEPRELS
# store enhanced deps --GB
# split string positions and enhanced labels as well?
self.columns[DEPS] = process_enhanced_deps(columns[DEPS])
ud = UDRepresentation()
# Load the CoNLL-U file
ud.path = path
index, sentence_start = 0, None
line_idx = 0
while True:
line = file.readline()
line_idx += 1 # errors will be displayed indexed from 1
if not line:
break
line = _decode(line.rstrip("\r\n"))
# Handle sentence start boundaries
if sentence_start is None:
# Skip comments
if line.startswith("#"):
continue
# Start a new sentence
ud.sentences.append(UDSpan(index, 0, line_idx))
sentence_start = len(ud.words)
if not line:
# Add parent and children UDWord links and check there are no cycles
def process_word(word):
if word.parent == "remapping":
raise UDError("There is a cycle in the sentence that ends at line %d" % line_idx)
if word.parent is None:
head = int(word.columns[HEAD])
if head < 0 or head > len(ud.words) - sentence_start:
raise UDError("HEAD '{}' points outside of the sentence that ends at line {}".format(_encode(word.columns[HEAD]), line_idx))
if head:
parent = ud.words[sentence_start + head - 1]
word.parent = "remapping"
process_word(parent)
word.parent = parent
position = sentence_start # need to incrementally keep track of current position for loop detection in relcl
for word in ud.words[sentence_start:]:
process_word(word)
enhanced_deps = word.columns[DEPS]
# replace head positions of enhanced dependencies with parent word object -- GB
processed_deps = []
for (head,steps) in word.columns[DEPS] : # (3,['conj:en','obj:voor'])
# Empty nodes should have been collapsed during preprocessing.
# If not, we cannot evaluate gapping correctly. However, people
# may care just about basic trees and may not want to bother
# with preprocessing.
if '.' in head:
if treebank_type.get('no_empty_nodes', False):
raise UDError("The collapsed CoNLL-U file still contains references to empty nodes at line {}: {}".format(line_idx, _encode(line)))
else:
continue
hd = int(head)
parent = ud.words[sentence_start + hd -1] if hd else hd # just assign '0' to parent for root cases
processed_deps.append((parent,steps))
enhanced_deps = processed_deps
# ignore rel>rel dependencies, and instead append the original hd/rel edge
# note that this also ignores other extensions (like adding lemma's)
# note that this sometimes introduces duplicates (if orig hd/rel was already included in DEPS)
if treebank_type.get('no_gapping', False) : # enhancement 1
processed_deps = []
for (parent,steps) in enhanced_deps :
if len(steps) > 1 :
processed_deps.append((word.parent,[word.columns[DEPREL]]))
else :
if (parent,steps) in processed_deps :
True
else :
processed_deps.append((parent,steps))
enhanced_deps = processed_deps
# for a given conj node, any rel other than conj in DEPS can be ignored
if treebank_type.get('no_shared_parents_in_coordination', False) : # enhancement 2
for (hd,steps) in enhanced_deps :
if len(steps) == 1 and steps[0].startswith('conj') :
enhanced_deps = [(hd,steps)]
# deprels not matching ud_hd/ud_dep are spurious.
# czech/pud estonian/ewt syntagrus finnish/pud
# TO DO: treebanks that do not mark xcomp and relcl subjects
if treebank_type.get('no_shared_dependents_in_coordination', False) : # enhancement 3
processed_deps = []
for (hd,steps) in enhanced_deps :
duplicate = 0
for (hd2,steps2) in enhanced_deps :
if steps == steps2 and hd2 == word.columns[HEAD] and hd != hd2 : # checking only for ud_hd here, check for ud_dep as well?
duplicate = 1
if not(duplicate) :
processed_deps.append((hd,steps))
enhanced_deps = processed_deps
# if treebank does not have control relations: subjects of xcomp parents in system are to be skipped
# note that rel is actually a path sometimes rel1>rel2 in theory rel2 could be subj?
# from lassy-small: 7:conj:en>nsubj:pass|7:conj:en>nsubj:xsubj (7,['conj:en','nsubj:xsubj'])
if treebank_type.get('no_control', False) : # enhancement 4
processed_deps = []
for (parent,steps) in enhanced_deps :
include = 1
if ( parent and parent.columns[DEPREL] == 'xcomp') :
for rel in steps:
if rel.startswith('nsubj') :
include = 0
if include :
processed_deps.append((parent,steps))
enhanced_deps = processed_deps
if treebank_type.get('no_external_arguments_of_relative_clauses', False) : # enhancement 5
processed_deps = []
for (parent,steps) in enhanced_deps :
if (steps[0] == 'ref') :
processed_deps.append((word.parent,[word.columns[DEPREL]])) # append the original relation
# ignore external argument link
# external args are deps of an acl:relcl where that acl also is a dependent of external arg (i.e. ext arg introduces a cycle)
elif ( parent and parent.columns[DEPREL].startswith('acl') and int(parent.columns[HEAD]) == position - sentence_start ) :
#print('removed external argument')
True
else :
processed_deps.append((parent,steps))
enhanced_deps = processed_deps
# treebanks where no lemma info has been added
if treebank_type.get('no_case_info', False) : # enhancement number 6
processed_deps = []
for (hd,steps) in enhanced_deps :
processed_steps = []
for dep in steps :
depparts = dep.split(':')
if depparts[0] in CASE_DEPRELS :
if (len(depparts) == 2 and not(depparts[1] in UNIVERSAL_DEPREL_EXTENSIONS )) :
dep = depparts[0]
processed_steps.append(dep)
processed_deps.append((hd,processed_steps))
enhanced_deps = processed_deps
position += 1
word.columns[DEPS] = enhanced_deps
# func_children cannot be assigned within process_word
# because it is called recursively and may result in adding one child twice.
for word in ud.words[sentence_start:]:
if word.parent and word.is_functional_deprel:
word.parent.functional_children.append(word)
if len(ud.words) == sentence_start :
raise UDError("There is a sentence with 0 tokens (possibly a double blank line) at line %d" % line_idx)
# Check there is a single root node
if len([word for word in ud.words[sentence_start:] if word.parent is None]) == 0:
raise UDError("There are no roots in the sentence that ends at %d" % line_idx)
if not treebank_type.get('multiple_roots_okay', False):
if len([word for word in ud.words[sentence_start:] if word.parent is None]) > 1:
raise UDError("There are multiple roots in the sentence that ends at %d" % line_idx)
# End the sentence
ud.sentences[-1].end = index
sentence_start = None
continue
# Read next token/word
columns = line.split("\t")
if len(columns) != 10:
raise UDError("The CoNLL-U line does not contain 10 tab-separated columns at line {}: '{}'".format(line_idx, _encode(line)))
# Skip empty nodes
# If we are evaluating enhanced graphs, empty nodes should have been collapsed
# during preprocessing and should not occur here. However, we cannot raise
# an exception if they do because the user may be interested just in the
# basic tree and may not want to bother with preprocessing.
if "." in columns[ID]:
# When launching this script, we can specify that empty nodes should be considered errors.
if treebank_type.get('no_empty_nodes', False):
raise UDError("The collapsed CoNLL-U line still contains empty nodes at line {}: {}".format(line_idx, _encode(line)))
else:
continue
# Delete spaces from FORM, so gold.characters == system.characters
# even if one of them tokenizes the space. Use any Unicode character
# with category Zs.
columns[FORM] = "".join(filter(lambda c: unicodedata.category(c) != "Zs", columns[FORM]))
if not columns[FORM]:
raise UDError("There is an empty FORM in the CoNLL-U file at line %d" % line_idx)
# Save token
ud.characters.extend(columns[FORM])
ud.tokens.append(UDSpan(index, index + len(columns[FORM]), line_idx))
index += len(columns[FORM])
# Handle multi-word tokens to save word(s)
if "-" in columns[ID]:
try:
start, end = map(int, columns[ID].split("-"))
except:
raise UDError("Cannot parse multi-word token ID '{}' at line {}".format(_encode(columns[ID]), line_idx))
words_expected = end - start + 1
words_found = 0
while words_found < words_expected:
word_line = _decode(file.readline().rstrip("\r\n"))
if not word_line:
raise UDError("The CoNLL-U file ends in an unfinished MWT at line {}".format(line_idx))
line_idx += 1
word_columns = word_line.split("\t")
if len(word_columns) != 10:
raise UDError("The CoNLL-U line does not contain 10 tab-separated columns at line {}: '{}'".format(line_idx, _encode(word_line)))
if "." in word_columns[ID]:
if treebank_type.get('no_empty_nodes', False):
raise UDError("The collapsed CoNLL-U line still contains empty nodes at line {}: {}".format(line_idx, _encode(line)))
else:
continue
ud.words.append(UDWord(ud.tokens[-1], word_columns, is_multiword=True))
words_found += 1
# Basic tokens/words
else:
try:
word_id = int(columns[ID])
except:
raise UDError("Cannot parse word ID '{}' at line {}".format(_encode(columns[ID]), line_idx))
if word_id != len(ud.words) - sentence_start + 1:
raise UDError("Incorrect word ID '{}' for word '{}', expected '{}' at line {}".format(
_encode(columns[ID]), _encode(columns[FORM]), len(ud.words) - sentence_start + 1, line_idx))
try:
head_id = int(columns[HEAD])
except ValueError as e:
raise UDError("Cannot parse HEAD '{}' at line {}".format(_encode(columns[HEAD]), line_idx)) from e
if head_id < 0:
raise UDError("HEAD cannot be negative at line %d" % line_idx)
ud.words.append(UDWord(ud.tokens[-1], columns, is_multiword=False))
if sentence_start is not None:
raise UDError("The CoNLL-U file does not end with empty line")
return ud
# Evaluate the gold and system treebanks (loaded using load_conllu).
def evaluate(gold_ud, system_ud):
class Score:
def __init__(self, gold_total, system_total, correct, aligned_total=None):
self.correct = correct
self.gold_total = gold_total
self.system_total = system_total
self.aligned_total = aligned_total
self.precision = correct / system_total if system_total else 0.0
self.recall = correct / gold_total if gold_total else 0.0
self.f1 = 2 * correct / (system_total + gold_total) if system_total + gold_total else 0.0
self.aligned_accuracy = correct / aligned_total if aligned_total else aligned_total
class AlignmentWord:
def __init__(self, gold_word, system_word):
self.gold_word = gold_word
self.system_word = system_word
class Alignment:
def __init__(self, gold_words, system_words):
self.gold_words = gold_words
self.system_words = system_words
self.matched_words = []
self.matched_words_map = {}
def append_aligned_words(self, gold_word, system_word):
self.matched_words.append(AlignmentWord(gold_word, system_word))
self.matched_words_map[system_word] = gold_word
def spans_score(gold_spans, system_spans):
correct, gi, si = 0, 0, 0
while gi < len(gold_spans) and si < len(system_spans):
if system_spans[si].start < gold_spans[gi].start:
si += 1
elif gold_spans[gi].start < system_spans[si].start:
gi += 1
else:
correct += gold_spans[gi].end == system_spans[si].end
si += 1
gi += 1
return Score(len(gold_spans), len(system_spans), correct)
def alignment_score(alignment, key_fn=None, filter_fn=None):
if filter_fn is not None:
gold = sum(1 for gold in alignment.gold_words if filter_fn(gold))
system = sum(1 for system in alignment.system_words if filter_fn(system))
aligned = sum(1 for word in alignment.matched_words if filter_fn(word.gold_word))
else:
gold = len(alignment.gold_words)
system = len(alignment.system_words)
aligned = len(alignment.matched_words)
if key_fn is None:
# Return score for whole aligned words
return Score(gold, system, aligned)
def gold_aligned_gold(word):
return word
def gold_aligned_system(word):
return alignment.matched_words_map.get(word, 'NotAligned') if word is not None else None
correct = 0
for words in alignment.matched_words:
if filter_fn is None or filter_fn(words.gold_word):
if key_fn(words.gold_word, gold_aligned_gold) == key_fn(words.system_word, gold_aligned_system):
correct += 1
return Score(gold, system, correct, aligned)
def enhanced_alignment_score(alignment, EULAS):
# count all matching enhanced deprels in gold, system GB
# gold and system = sum of gold and predicted deps
# parents are pointers to word object, make sure to compare system parent with aligned word in gold in cases where
# tokenization introduces mismatches in number of words per sentence.
gold = 0
for gold_word in alignment.gold_words :
gold += len(gold_word.columns[DEPS])
system = 0
for system_word in alignment.system_words :
system += len(system_word.columns[DEPS])
correct = 0
for words in alignment.matched_words:
gold_deps = words.gold_word.columns[DEPS]
system_deps = words.system_word.columns[DEPS]
for (parent, dep) in gold_deps :
eulas_dep = [d.split(':')[0] for d in dep]
for (sparent, sdep) in system_deps:
eulas_sdep = [d.split(':')[0] for d in sdep]
if dep == sdep or ( eulas_dep == eulas_sdep and EULAS ) :
if parent == alignment.matched_words_map.get(sparent, 'NotAligned') :
correct += 1
elif (parent == 0 and sparent == 0) : # cases where parent is root
correct += 1
return Score(gold, system, correct)
def beyond_end(words, i, multiword_span_end):
if i >= len(words):
return True
if words[i].is_multiword:
return words[i].span.start >= multiword_span_end
return words[i].span.end > multiword_span_end
def extend_end(word, multiword_span_end):
if word.is_multiword and word.span.end > multiword_span_end:
return word.span.end
return multiword_span_end
def find_multiword_span(gold_words, system_words, gi, si):
# We know gold_words[gi].is_multiword or system_words[si].is_multiword.
# Find the start of the multiword span (gs, ss), so the multiword span is minimal.
# Initialize multiword_span_end characters index.
if gold_words[gi].is_multiword:
multiword_span_end = gold_words[gi].span.end
if not system_words[si].is_multiword and system_words[si].span.start < gold_words[gi].span.start:
si += 1
else: # if system_words[si].is_multiword
multiword_span_end = system_words[si].span.end
if not gold_words[gi].is_multiword and gold_words[gi].span.start < system_words[si].span.start:
gi += 1
gs, ss = gi, si
# Find the end of the multiword span
# (so both gi and si are pointing to the word following the multiword span end).
while not beyond_end(gold_words, gi, multiword_span_end) or \
not beyond_end(system_words, si, multiword_span_end):
if gi < len(gold_words) and (si >= len(system_words) or
gold_words[gi].span.start <= system_words[si].span.start):
multiword_span_end = extend_end(gold_words[gi], multiword_span_end)
gi += 1
else:
multiword_span_end = extend_end(system_words[si], multiword_span_end)
si += 1
return gs, ss, gi, si
def compute_lcs(gold_words, system_words, gi, si, gs, ss):
lcs = [[0] * (si - ss) for i in range(gi - gs)]
for g in reversed(range(gi - gs)):
for s in reversed(range(si - ss)):
if gold_words[gs + g].columns[FORM].lower() == system_words[ss + s].columns[FORM].lower():
lcs[g][s] = 1 + (lcs[g+1][s+1] if g+1 < gi-gs and s+1 < si-ss else 0)
lcs[g][s] = max(lcs[g][s], lcs[g+1][s] if g+1 < gi-gs else 0)
lcs[g][s] = max(lcs[g][s], lcs[g][s+1] if s+1 < si-ss else 0)
return lcs
def align_words(gold_words, system_words):
alignment = Alignment(gold_words, system_words)
gi, si = 0, 0
while gi < len(gold_words) and si < len(system_words):
if gold_words[gi].is_multiword or system_words[si].is_multiword:
# A: Multi-word tokens => align via LCS within the whole "multiword span".
gs, ss, gi, si = find_multiword_span(gold_words, system_words, gi, si)
if si > ss and gi > gs:
lcs = compute_lcs(gold_words, system_words, gi, si, gs, ss)
# Store aligned words
s, g = 0, 0
while g < gi - gs and s < si - ss:
if gold_words[gs + g].columns[FORM].lower() == system_words[ss + s].columns[FORM].lower():
alignment.append_aligned_words(gold_words[gs+g], system_words[ss+s])
g += 1
s += 1
elif lcs[g][s] == (lcs[g+1][s] if g+1 < gi-gs else 0):
g += 1
else:
s += 1
else:
# B: No multi-word token => align according to spans.
if (gold_words[gi].span.start, gold_words[gi].span.end) == (system_words[si].span.start, system_words[si].span.end):
alignment.append_aligned_words(gold_words[gi], system_words[si])
gi += 1
si += 1
elif gold_words[gi].span.start <= system_words[si].span.start:
gi += 1
else:
si += 1
return alignment
# Check that the underlying character sequences match.
if gold_ud.characters != system_ud.characters:
# Identify the surrounding tokens and line numbers so the error is easier to debug.
index = 0
while index < len(gold_ud.characters) and index < len(system_ud.characters) and \
gold_ud.characters[index] == system_ud.characters[index]:
index += 1
gtindex = 0
while gtindex < len(gold_ud.tokens) and gold_ud.tokens[gtindex].end-1 < index:
gtindex += 1
stindex = 0
while stindex < len(system_ud.tokens) and system_ud.tokens[stindex].end-1 < index:
stindex += 1
gtokenreport = "The error occurs right at the beginning of the two files.\n"
stokenreport = ""
if gtindex > 0:
nprev = 10 if gtindex >= 10 else gtindex
nnext = 10 if gtindex + 10 <= len(gold_ud.tokens) else len(gold_ud.tokens) - gtindex
nfirst = gtindex - nprev
prevtokens = ' '.join([''.join(gold_ud.characters[t.start:t.end]) for t in gold_ud.tokens[nfirst:gtindex]])
nexttokens = ' '.join([''.join(gold_ud.characters[t.start:t.end]) for t in gold_ud.tokens[gtindex:gtindex + nnext]])
gtokenreport = "File '{}':\n".format(gold_ud.path)
gtokenreport += " Token no. {} on line no. {} is the last one with all characters reproduced in the other file.\n".format(gtindex, gold_ud.tokens[gtindex-1].line)
gtokenreport += " The previous {} tokens are '{}'.\n".format(nprev, prevtokens)
gtokenreport += " The next {} tokens are '{}'.\n".format(nnext, nexttokens)
if stindex > 0:
nprev = 10 if stindex >= 10 else stindex
nnext = 10 if stindex + 10 <= len(system_ud.tokens) else len(system_ud.tokens) - stindex
nfirst = stindex - nprev
prevtokens = ' '.join([''.join(system_ud.characters[t.start:t.end]) for t in system_ud.tokens[nfirst:stindex]])
nexttokens = ' '.join([''.join(system_ud.characters[t.start:t.end]) for t in system_ud.tokens[stindex:stindex + nnext]])
stokenreport = "File '{}':\n".format(system_ud.path)
stokenreport += " Token no. {} on line no. {} is the last one with all characters reproduced in the other file.\n".format(stindex, system_ud.tokens[stindex-1].line)
stokenreport += " The previous {} tokens are '{}'.\n".format(nprev, prevtokens)
stokenreport += " The next {} tokens are '{}'.\n".format(nnext, nexttokens)
raise UDError(
"The concatenation of tokens in gold file and in system file differ!\n" + gtokenreport + stokenreport +
"First 20 differing characters in gold file: '{}' and system file: '{}'".format(
"".join(map(_encode, gold_ud.characters[index:index + 20])),
"".join(map(_encode, system_ud.characters[index:index + 20]))
)
)
# Align words
alignment = align_words(gold_ud.words, system_ud.words)
# Compute the F1-scores
return {
"Tokens": spans_score(gold_ud.tokens, system_ud.tokens),
"Sentences": spans_score(gold_ud.sentences, system_ud.sentences),
"Words": alignment_score(alignment),
"UPOS": alignment_score(alignment, lambda w, _: w.columns[UPOS]),
"XPOS": alignment_score(alignment, lambda w, _: w.columns[XPOS]),
"UFeats": alignment_score(alignment, lambda w, _: w.columns[FEATS]),
"AllTags": alignment_score(alignment, lambda w, _: (w.columns[UPOS], w.columns[XPOS], w.columns[FEATS])),
"Lemmas": alignment_score(alignment, lambda w, ga: w.columns[LEMMA] if ga(w).columns[LEMMA] != "_" else "_"),
"UAS": alignment_score(alignment, lambda w, ga: ga(w.parent)),
"LAS": alignment_score(alignment, lambda w, ga: (ga(w.parent), w.columns[DEPREL])),
"ELAS": enhanced_alignment_score(alignment, 0),
"EULAS": enhanced_alignment_score(alignment, 1),
"CLAS": alignment_score(alignment, lambda w, ga: (ga(w.parent), w.columns[DEPREL]),
filter_fn=lambda w: w.is_content_deprel),
"MLAS": alignment_score(alignment, lambda w, ga: (ga(w.parent), w.columns[DEPREL], w.columns[UPOS], w.columns[FEATS],
[(ga(c), c.columns[DEPREL], c.columns[UPOS], c.columns[FEATS])
for c in w.functional_children]),
filter_fn=lambda w: w.is_content_deprel),
"BLEX": alignment_score(alignment, lambda w, ga: (ga(w.parent), w.columns[DEPREL],
w.columns[LEMMA] if ga(w).columns[LEMMA] != "_" else "_"),
filter_fn=lambda w: w.is_content_deprel),
}
def load_conllu_file(path, treebank_type=None):
if treebank_type is None:
treebank_type = {}
_file = open(path, mode="r", **({"encoding": "utf-8"} if sys.version_info >= (3, 0) else {}))
return load_conllu(_file, path, treebank_type)
def evaluate_wrapper(args):
treebank_type = {}
enhancements = list(args.enhancements)
treebank_type['no_gapping'] = 1 if '1' in enhancements else 0
treebank_type['no_shared_parents_in_coordination'] = 1 if '2' in enhancements else 0
treebank_type['no_shared_dependents_in_coordination'] = 1 if '3' in enhancements else 0
treebank_type['no_control'] = 1 if '4' in enhancements else 0
treebank_type['no_external_arguments_of_relative_clauses'] = 1 if '5' in enhancements else 0
treebank_type['no_case_info'] = 1 if '6' in enhancements else 0
treebank_type['no_empty_nodes'] = args.no_empty_nodes
treebank_type['multiple_roots_okay'] = args.multiple_roots_okay
# Load CoNLL-U files
gold_ud = load_conllu_file(args.gold_file, treebank_type)
system_ud = load_conllu_file(args.system_file, treebank_type)
return evaluate(gold_ud, system_ud)
def build_evaluation_table(evaluation, verbose, counts, enhanced):
text = []
# Print the evaluation
if not verbose and not counts:
text.append("LAS F1 Score: {:.2f}".format(100 * evaluation["LAS"].f1))
text.append("MLAS Score: {:.2f}".format(100 * evaluation["MLAS"].f1))
text.append("BLEX Score: {:.2f}".format(100 * evaluation["BLEX"].f1))
if enhanced:
text.append("ELAS F1 Score: {:.2f}".format(100 * evaluation["ELAS"].f1))
text.append("EULAS F1 Score: {:.2f}".format(100 * evaluation["EULAS"].f1))
else:
if counts:
text.append("Metric | Correct | Gold | Predicted | Aligned")
else:
text.append("Metric | Precision | Recall | F1 Score | AligndAcc")
text.append("-----------+-----------+-----------+-----------+-----------")
metrics = ["Tokens", "Sentences", "Words", "UPOS", "XPOS", "UFeats", "AllTags", "Lemmas", "UAS", "LAS", "CLAS", "MLAS", "BLEX"]
if enhanced:
metrics += ["ELAS", "EULAS"]
for metric in metrics:
if counts:
text.append("{:11}|{:10} |{:10} |{:10} |{:10}".format(
metric,
evaluation[metric].correct,
evaluation[metric].gold_total,
evaluation[metric].system_total,
evaluation[metric].aligned_total or (evaluation[metric].correct if metric == "Words" else "")
))
else:
text.append("{:11}|{:10.2f} |{:10.2f} |{:10.2f} |{}".format(
metric,
100 * evaluation[metric].precision,
100 * evaluation[metric].recall,
100 * evaluation[metric].f1,
"{:10.2f}".format(100 * evaluation[metric].aligned_accuracy) if evaluation[metric].aligned_accuracy is not None else ""
))
return "\n".join(text)
def main():
# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument('gold_file', type=str,
help='Name of the CoNLL-U file with the gold data.')
parser.add_argument('system_file', type=str,
help='Name of the CoNLL-U file with the predicted data.')
parser.add_argument('--verbose', '-v', default=False, action='store_true',
help='Print all metrics.')
parser.add_argument('--counts', '-c', default=False, action='store_true',
help='Print raw counts of correct/gold/system/aligned words instead of precision/recall/F1 for all metrics.')
parser.add_argument('--no-enhanced', dest='enhanced', action='store_false', default=True,
help='Turn off evaluation of enhanced dependencies.')
parser.add_argument('--enhancements', type=str, default='0',
help='Level of enhancements in the gold data (see guidelines) 0=all (default), 1=no gapping, 2=no shared parents, 3=no shared dependents 4=no control, 5=no external arguments, 6=no lemma info, combinations: 12=both 1 and 2 apply, etc.')
parser.add_argument('--no-empty-nodes', default=False,
help='Empty nodes have been collapsed (needed to correctly evaluate enhanced/gapping). Raise exception if an empty node is encountered.')
parser.add_argument('--multiple-roots-okay', default=False, action='store_true',
help='A single sentence can have multiple nodes with HEAD=0.')
args = parser.parse_args()
# Evaluate
evaluation = evaluate_wrapper(args)
results = build_evaluation_table(evaluation, args.verbose, args.counts, args.enhanced)
print(results)
if __name__ == "__main__":
main()
# Tests, which can be executed with `python -m unittest conll18_ud_eval`.
class TestAlignment(unittest.TestCase):
@staticmethod
def _load_words(words):
"""Prepare fake CoNLL-U files with fake HEAD to prevent multiple roots errors."""
lines, num_words = [], 0
for w in words:
parts = w.split(" ")
if len(parts) == 1:
num_words += 1
lines.append("{}\t{}\t_\t_\t_\t_\t{}\t_\t_\t_".format(num_words, parts[0], int(num_words>1)))
else:
lines.append("{}-{}\t{}\t_\t_\t_\t_\t_\t_\t_\t_".format(num_words + 1, num_words + len(parts) - 1, parts[0]))
for part in parts[1:]:
num_words += 1
lines.append("{}\t{}\t_\t_\t_\t_\t{}\t_\t_\t_".format(num_words, part, int(num_words>1)))
return load_conllu((io.StringIO if sys.version_info >= (3, 0) else io.BytesIO)("\n".join(lines+["\n"])),
"in memory test file", {})
def _test_exception(self, gold, system):
self.assertRaises(UDError, evaluate, self._load_words(gold), self._load_words(system))
def _test_ok(self, gold, system, correct):
metrics = evaluate(self._load_words(gold), self._load_words(system))
gold_words = sum((max(1, len(word.split(" ")) - 1) for word in gold))
system_words = sum((max(1, len(word.split(" ")) - 1) for word in system))
self.assertEqual((metrics["Words"].precision, metrics["Words"].recall, metrics["Words"].f1),
(correct / system_words, correct / gold_words, 2 * correct / (gold_words + system_words)))
def test_exception(self):
self._test_exception(["a"], ["b"])
def test_equal(self):
self._test_ok(["a"], ["a"], 1)
self._test_ok(["a", "b", "c"], ["a", "b", "c"], 3)
def test_equal_with_multiword(self):
self._test_ok(["abc a b c"], ["a", "b", "c"], 3)
self._test_ok(["a", "bc b c", "d"], ["a", "b", "c", "d"], 4)
self._test_ok(["abcd a b c d"], ["ab a b", "cd c d"], 4)
self._test_ok(["abc a b c", "de d e"], ["a", "bcd b c d", "e"], 5)
def test_alignment(self):
self._test_ok(["abcd"], ["a", "b", "c", "d"], 0)
self._test_ok(["abc", "d"], ["a", "b", "c", "d"], 1)
self._test_ok(["a", "bc", "d"], ["a", "b", "c", "d"], 2)
self._test_ok(["a", "bc b c", "d"], ["a", "b", "cd"], 2)
self._test_ok(["abc a BX c", "def d EX f"], ["ab a b", "cd c d", "ef e f"], 4)
self._test_ok(["ab a b", "cd bc d"], ["a", "bc", "d"], 2)
self._test_ok(["a", "bc b c", "d"], ["ab AX BX", "cd CX a"], 1)