-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvmwrap.opam
82 lines (81 loc) · 2.99 KB
/
svmwrap.opam
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
opam-version: "2.0"
authors: "Francois Berenger"
maintainer: "[email protected]"
homepage: "https://github.com/UnixJunkie/svmwrap"
bug-reports: "https://github.com/UnixJunkie/svmwrap/issues"
dev-repo: "git+https://github.com/UnixJunkie/svmwrap.git"
license: "BSD-3-Clause"
build: ["dune" "build" "-p" name "-j" jobs]
depends: [
"base-unix"
"batteries"
"conf-libsvm-tools"
"cpm" {>= "11.0.0"}
"dolog" {>= "6.0.0"}
"dune" {>= "2.9"}
"minicli" {>= "5.0.0"}
"molenc" {>= "16.0.0"}
"parany" {>= "11.0.0"}
"line_oriented" {>= "1.2.0"}
"nlopt"
"dokeysto" # dokeysto_camltc not yet compiling w/ ocaml-5
"ocaml" {>= "5.0.0"} # possible perf. regr.: dokeysto_camltc -> dokeysto
]
# the software can compile and install without the depopts.
# however, some tools and options will not work anymore at run-time
depopts: [
"conf-gnuplot"
]
synopsis: "Wrapper on top of libsvm-tools"
description: """
Svmwrap can be used to train/test regressors using libsvm-tools.
(Scary) usage:
usage: svmwrap
-i <filename>: training set or DB to screen
--feats <int>: number of features
[-o <filename>]: predictions output file
[-np <int>]: ncores
[--kernel <string>] choose kernel type {Lin|RBF|Sig|Pol}
[-c <float>]: fix C
[-e <float>]: epsilon in the loss function of epsilon-SVR;
(0 <= epsilon <= max_i(|y_i|))
[--nlopt <int>]: use NLopt with MAX_ITER (global optim.)
instead of grid-search (recommended: MAX_ITER >= 100)
[-g <float>]: fix gamma (for RBF and Sig kernels)
[-r <float>]: fix r for the Sig kernel
[--iwn]: turn ON instance-wise-normalization
[--scale]: turn ON [0:1] scaling (NOT PRODUCTION READY)
[--no-plot]: no gnuplot
[{-n|--NxCV} <int>]: folds of cross validation
[-q]: quiet
[-v|--verbose]: equivalent to not specifying -q
[--seed <int>]: fix random seed
[-p <float>]: training set portion (in [0.0:1.0])
[--pairs]: read from .AP files (atom pairs; will offset feat. indexes by 1)
[--train <train.liblin>]: training set (overrides -p)
[--valid <valid.liblin>]: validation set (overrides -p)
[--test <test.liblin>]: test set (overrides -p)
[{-l|--load} <filename>]: prod. mode; use trained models
[{-s|--save} <filename>]: train. mode; save trained models
[-f]: force overwriting existing model file
[--scan-c]: scan for best C
[--scan-e <int>]: epsilon scan #steps for SVR
[--scan-g]: scan for best gamma
[--regr]: regression (SVR); also, implied by -e and --scan-e
[--e-range <float>:<int>:<float>]: specific range for e
(semantic=start:nsteps:stop)
[--c-range <float,float,...>] explicit scan range for C
(example='0.01,0.02,0.03')
[--g-range <float,float,...>] explicit range for gamma
(example='0.01,0.02,0.03')
[--scan-k]: scan number of bags
[--k-range <int,int,...>] explicit scan range for k
(example='1,2,3,5,10')
[-k <int>]: explicit value for k
[--r-range <float,float,...>] explicit range for r
(example='0.01,0.02,0.03')
"""
# url {
# src: "https://github.com/UnixJunkie/svmwrap/archive/XXX.tar.gz"
# checksum: "md5=YYY"
# }