-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathengine_pretrain.py
executable file
·95 lines (73 loc) · 3.79 KB
/
engine_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# Un-Mix: https://github.com/szq0214/Un-Mix
# MAE: https://github.com/facebookresearch/mae
# --------------------------------------------------------
import math
import sys
from typing import Iterable
import torch
import numpy as np
import util.misc as misc
import util.lr_sched as lr_sched
def train_one_epoch(model: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler,
teach_model,
log_writer=None,
args=None):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 5
accum_iter = args.accum_iter
optimizer.zero_grad()
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
for data_iter_step, (sample_1, sample_2, target_1, target_2) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)
# mix two images in the same batch.
sample_1.to(device, non_blocking=True)
lam = np.random.beta(1.0, 1.0)
mixed_images = lam * sample_1 + (1 - lam) * sample_2
im1 = sample_1
im2 = sample_2
#lam = np.random.beta(1.0, 1.0)
weak_mix = np.argmin([lam, 1-lam])
metric_logger.update(lam=lam)
inps = (mixed_images.to(device, non_blocking=True), im1.to(device, non_blocking=True),im2.to(device, non_blocking=True))
latent1, mask, ids_shuffle, ids_restore = teach_model.forward_encoder(inps[0], mask_ratio=args.mask_ratio)
latent1 = teach_model.decoder_embed(latent1)
latent2, mask, ids_shuffle, ids_restore = teach_model.forward_encoder(inps[0], mask_ratio=args.mask_ratio, ids_shuffle=ids_shuffle, ids_restore=ids_restore)
latent2 = teach_model.decoder_embed(latent2)
loss, _, _ = model(inps, mask_ratio=args.mask_ratio, weak_idx=weak_mix,ids_shuffle=ids_shuffle, ids_restore=ids_restore,teach_latent=(latent1, latent2))
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
loss /= accum_iter
loss_scaler(loss, optimizer, parameters=model.parameters(),
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
lr = optimizer.param_groups[0]["lr"]
metric_logger.update(lr=lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
log_writer.add_scalar('train_loss', loss_value_reduce, epoch_1000x)
log_writer.add_scalar('lr', lr, epoch_1000x)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}