-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathmriutils.py
278 lines (233 loc) · 8.52 KB
/
mriutils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import numpy as np
import sys
sys.path.append('../')
from scipy.io import savemat
import os
import matplotlib.pyplot as plt
import imageio
from skimage.measure import compare_ssim
def removeFEOversampling(src):
""" Remove Frequency Encoding (FE) oversampling.
This is implemented such that they match with the DICOM images.
"""
assert src.ndim >= 2
nFE, nPE = src.shape[-2:]
if nPE != nFE:
return np.take(src, np.arange(int(nFE*0.25)+1, int(nFE*0.75)+1), axis=-2)
else:
return src
def addFEOversampling(src):
""" Add Frequency Encoding (FE) oversampling.
This is implemented such that they match with the DICOM images.
"""
shape = list(src.shape)
shape_upper = shape.copy()
shape_upper[-2] = shape[-2] // 2 + 1
shape_lower = shape.copy()
shape_lower[-2] = shape[-2] // 2 - 1
zeros_upper = np.zeros(tuple(shape_upper), src.dtype)
zeros_lower = np.zeros(tuple(shape_lower), src.dtype)
dst = np.concatenate((zeros_upper, src, zeros_lower), axis=-2)
return dst
def removePEOversampling(src):
""" Remove Phase Encoding (PE) oversampling. """
nPE = src.shape[-1]
nFE = src.shape[-2]
PE_OS_crop = (nPE - nFE) / 2
if PE_OS_crop == 0:
return src
else:
return np.take(src, np.arange(int(PE_OS_crop)+1, nPE-int(PE_OS_crop)+1), axis=-1)
def fft2c(img):
""" Centered fft2 """
return np.fft.fftshift(np.fft.fft2(np.fft.ifftshift(img))) / np.sqrt(img.shape[-2]*img.shape[-1])
def ifft2c(img):
""" Centered ifft2 """
return np.fft.fftshift(np.fft.ifft2(np.fft.ifftshift(img))) * np.sqrt(img.shape[-2]*img.shape[-1])
def mriAdjointOp(rawdata, coilsens, mask):
""" Adjoint MRI Cartesian Operator """
return np.sum(ifft2c(rawdata * mask)*np.conj(coilsens), axis=0)
def mriForwardOp(img, coilsens, mask):
""" Forward MRI Cartesian Operator """
return fft2c(coilsens * img)*mask
def saveAsMat(img, filename, matlab_id, mat_dict=None):
""" Save mat files with ndim in [2,3,4]
Args:
img: image to be saved
file_path: base directory
matlab_id: identifer of variable
mat_dict: additional variables to be saved
"""
assert img.ndim in [2, 3, 4]
img_normalized = img.copy()
if img.ndim == 3:
img_normalized = np.transpose(img_normalized, (1, 2, 0))
elif img.ndim == 4:
img_normalized = np.transpose(img_normalized, (2, 3, 0, 1))
if mat_dict == None:
mat_dict = {matlab_id: img_normalized}
else:
mat_dict[matlab_id] = img_normalized
dirname = os.path.dirname(filename) or '.'
if not os.path.exists(dirname):
os.makedirs(dirname)
savemat(filename, mat_dict)
def _normalize(img):
""" Normalize image between [0, 1] """
tmp = img - np.min(img)
tmp /= np.max(tmp)
return tmp
def kshow(kspace):
""" Visualize kspace (logarithm). """
img = np.abs(kspace)
img /= np.max(img)
img = np.log(img + 1e-5)
plt.figure();
plt.imshow(img, cmap='gray', interpolation='nearest')
plt.axis('off')
def ksave(kspace, filepath):
""" Save kspace (logarithm). """
path = os.path.dirname(filepath) or '.'
if not os.path.exists(path):
os.makedirs(path)
img = np.abs(kspace)
img /= np.max(img)
img = np.log(img + 1e-5)
imageio.imwrite(filepath, _normalize(img).astype(np.uint8))
def imshow(img, title=""):
""" Show image as grayscale. """
if img.dtype == np.complex64 or img.dtype == np.complex128:
print('img is complex! Take absolute value.')
img = np.abs(img)
plt.figure()
plt.imshow(img, cmap='gray', interpolation='nearest')
plt.axis('off')
plt.title(title)
def phaseshow(img, title=''):
""" Show phase of image. """
if not (img.dtype == np.complex64 or img.dtype == np.complex128):
print('img is not complex!')
img = np.angle(img)
plt.figure()
plt.imshow(img, cmap='gray', interpolation='nearest')
plt.axis('off')
plt.colorbar()
plt.title(title)
plt.set_cmap('hsv')
def postprocess(img, dataset):
""" Postprocess NYU Knee data.
For other postprocessing, please add your postprocessing steps here."""
if dataset in ['coronal_pd', 'axial_t2', 'coronal_pd_fs', 'sagittal_pd', 'sagittal_t2']:
img = removePEOversampling(img)
else:
print(Warning("Postprocessing not defined for dataset %s" % dataset))
assert img.ndim in [2, 3]
img_ndim = img.ndim
if img_ndim == 2:
img = img[np.newaxis]
for i in range(img.shape[0]):
if dataset in ['coronal_pd', 'axial_t2', 'coronal_pd_fs']:
img[i] = np.flipud(np.fliplr(img[i]))
elif dataset in ['sagittal_pd', 'sagittal_t2']:
img[i] = np.flipud(np.rot90(img[i]))
else:
print(Warning("Postprocessing not defined for dataset %s" % dataset))
if img_ndim == 2:
img = img[0]
return img
def contrastStretching(img, saturated_pixel=0.004):
""" constrast stretching according to imageJ
http://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm"""
values = np.sort(img, axis=None)
nr_pixels = np.size(values)
lim = int(np.round(saturated_pixel*nr_pixels))
v_min = values[lim]
v_max = values[-lim-1]
img = (img - v_min)*(255.0)/(v_max - v_min)
img = np.minimum(255.0, np.maximum(0.0, img))
return img
def brighten(img, beta):
""" brighten image according to Matlab."""
if np.max(img) > 1:
img / 255.0
assert beta > 0 and beta < 1
tol = np.sqrt(2.2204e-16)
gamma = 1 - min(1-tol, beta)
img = img ** gamma
return img
def getContrastStretchingLimits(img, saturated_pixel=0.004):
""" constrast stretching according to imageJ
http://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm"""
values = np.sort(img, axis=None)
nr_pixels = np.size(values)
lim = int(np.round(saturated_pixel*nr_pixels))
v_min = values[lim]
v_max = values[-lim-1]
return v_min, v_max
def normalize(img, v_min, v_max, max_int=255.0):
""" normalize image to [0, max_int] according to image intensities [v_min, v_max] """
img = (img - v_min)*(max_int)/(v_max - v_min)
img = np.minimum(max_int, np.maximum(0.0, img))
return img
def imsave(img, filepath, normalize=True):
""" Save an image. """
path = os.path.dirname(filepath) or '.'
if not os.path.exists(path):
os.makedirs(path)
if img.dtype == np.complex64 or img.dtype == np.complex128:
print('img is complex! Take absolute value.')
img = np.abs(img)
if normalize:
img = _normalize(img)
img *= 255.0
imageio.imwrite(filepath, img.astype(np.uint8))
def imsaveDiff(img, maxIntensity, scale, filepath):
""" Save difference image according to maxIntensity. Amplify difference by scale. """
path = os.path.dirname(filepath) or '.'
if not os.path.exists(path):
os.makedirs(path)
if img.dtype == np.complex:
print('img is complex! Take absolute value.')
img = np.abs(img)
tmp = img
tmp /= maxIntensity
tmp *= scale
tmp = np.minimum(tmp, 1) * 255.0
imageio.imwrite(filepath, tmp.astype(np.uint8))
def rmse(img, ref):
""" Compute RMSE. If inputs are 3D, average over axis=0 """
assert img.ndim == ref.ndim
assert img.ndim in [2,3]
if img.ndim == 2:
axis = (0,1)
elif img.ndim == 3:
axis = (1,2)
# else not possible
denominator = np.sum(np.real(ref * np.conj(ref)), axis=axis)
nominator = np.sum(np.real((img - ref) * np.conj(img - ref)), axis=axis)
rmse = np.mean(np.sqrt(nominator / denominator))
return rmse
def ssim(img, ref, dynamic_range=None):
""" Compute SSIM. If inputs are 3D, average over axis=0.
If dynamic_range != None, the same given dynamic range will be used for all slices in the volume. """
assert img.ndim == ref.ndim
assert img.ndim in [2, 3]
if img.ndim == 2:
img = img[np.newaxis]
ref = ref[np.newaxis]
# ssim averaged over slices
ssim_slices = []
ref_abs = np.abs(ref)
img_abs = np.abs(img)
for i in range(ref_abs.shape[0]):
if dynamic_range == None:
drange = np.max(ref_abs[i]) - np.min(ref_abs[i])
else:
drange = dynamic_range
_, ssim_i = compare_ssim(img_abs[i], ref_abs[i],
data_range=drange,
gaussian_weights=True,
use_sample_covariance=False,
full=True)
ssim_slices.append(np.mean(ssim_i))
return np.mean(ssim_slices)