This document has advanced instructions for running ResNet50 V1 Int8
inference, which provides more control over the individual parameters that
are used. For more information on using /benchmarks/launch_benchmark.py
,
see the launch benchmark documentation.
Prior to using these instructions, please follow the setup instructions from
the model's README and/or the
AI Kit documentation to get your environment
setup (if running on bare metal) and download the dataset, pretrained model, etc.
If you are using AI Kit, please exclude the --docker-image
flag from the
commands below, since you will be running the the TensorFlow conda environment
instead of docker.
Any of the launch_benchmark.py
commands below can be run on bare metal by
removing the --docker-image
arg. Ensure that you have all of the
required prerequisites installed in your environment
before running without the docker container.
If you are new to docker and are running into issues with the container, see this document for troubleshooting tips.
Once your environment is setup, navigate to the benchmarks
directory of
the model zoo and set environment variables pointing to the directory for the
dataset, pretrained model frozen graph, and an output directory where log
files will be written.
# cd to the benchmarks directory in the model zoo
cd benchmarks
export DATASET_DIR=<path to the dataset>
export OUTPUT_DIR=<directory where log files will be written>
export PRETRAINED_MODEL=<path to the frozen graph that you downloaded>
ResNet50 V1 Int8 inference can be run to test accuracy, batch inference, or online inference. Use one of the following examples below, depending on your use case.
- For accuracy run the following command that uses the
DATASET_DIR
, a batch size of 100, and the--accuracy-only
flag:
python launch_benchmark.py \
--model-name resnet50 \
--precision int8 \
--mode inference \
--framework tensorflow \
--in-graph ${PRETRAINED_MODEL} \
--data-location ${DATASET_DIR} \
--output-dir ${OUTPUT_DIR} \
--accuracy-only \
--batch-size 100 \
--socket-id 0 \
--docker-image intel/intel-optimized-tensorflow:latest
- For batch inference, use the command below that uses the
DATASET_DIR
, a batch size of 128, 500 steps, and 50 warmup_steps.
python launch_benchmark.py \
--model-name resnet50 \
--precision int8 \
--mode inference \
--framework tensorflow \
--in-graph ${PRETRAINED_MODEL} \
--data-location ${DATASET_DIR} \
--output-dir ${OUTPUT_DIR} \
--batch-size 128 \
--benchmark-only \
--socket-id 0 \
--docker-image intel/intel-optimized-tensorflow:latest
-- warmup_steps=50 steps=500
Example log file snippet when testing accuracy:
Iteration time: ... ms
Processed 49600 images. (Top1 accuracy, Top5 accuracy) = (0.7361, 0.9155)
Iteration time: ... ms
Processed 49700 images. (Top1 accuracy, Top5 accuracy) = (0.7361, 0.9155)
Iteration time: ... ms
Processed 49800 images. (Top1 accuracy, Top5 accuracy) = (0.7360, 0.9154)
Iteration time: ... ms
Processed 49900 images. (Top1 accuracy, Top5 accuracy) = (0.7361, 0.9155)
Iteration time: ... ms
Processed 50000 images. (Top1 accuracy, Top5 accuracy) = (0.7360, 0.9154)
Ran inference with batch size 100
Log location outside container: {--output-dir value}/benchmark_resnet50_inference_int8_20190104_212224.log
Example log file snippet when testing batch inference:
...
Iteration 497: ... sec
Iteration 498: ... sec
Iteration 499: ... sec
Iteration 500: ... sec
Average time: ... sec
Batch size = 128
Throughput: ... images/sec
Ran inference with batch size 128
Log location outside container: {--output-dir value}/benchmark_resnet50_inference_int8_20190416_172735.log