Skip to content

Latest commit

 

History

History
138 lines (115 loc) · 5.84 KB

README.md

File metadata and controls

138 lines (115 loc) · 5.84 KB

COCO Dataset Scripts

Download and preprocess the COCO validation images

The COCO dataset validation images are used for inference with object detection models.

The preprocess_coco_val.sh script calls the create_coco_tf_record.py script from the TensorFlow Model Garden to convert the raw images and annotations to TF records. The version of the conversion script that you will need to use will depend on which model is being run. The table below has git commit ids for the TensorFlow Model Garden that have been tested with each model.

Model Git Commit ID
RFCN / Faster R-CNN / SSD-ResNet34 1efe98bb8e8d98bbffc703a90d88df15fc2ce906
SSD-MobileNet 7a9934df2afdf95be9405b4e9f1f2480d748dc40

Prior to running the script, you must download and extract the COCO validation images and annotations from the COCO website.

export DATASET_DIR=<directory where raw images/annotations will be downloaded>
mkdir -p $DATASET_DIR
cd $DATASET_DIR

wget http://images.cocodataset.org/zips/val2017.zip
unzip val2017.zip

wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
unzip annotations_trainval2017.zip

Follow the instructions in:

  • Bare metal section for dataset preprocessing on baremetal.

OR Jump to,

  • Docker section for faster dataset preprocessing using intel/object-detection:tf-1.15.2-preprocess-coco-val docker container.

Bare Metal

  1. Clone the TensorFlow models repo using the git commit id from the table above and save the directory path to the TF_MODELS_DIR environment variable.

    git clone https://github.com/tensorflow/models.git tensorflow-models
    cd tensorflow-models
    git checkout <Git commit id>
    export TF_MODELS_DIR=$(pwd)
    cd ..
    
  2. Install the prerequisites based on the TensorFlow models object detection installation doc and run protobuf compilation on the code that was cloned in the previous step.

    virtualenv --python=python3.6 coco_env
    . coco_env/bin/activate
    
    # Running next command requires root privileges
    apt-get update && apt-get install protobuf-compiler python-pil python-lxml python-tk
    pip install intel-tensorflow==1.15.2
    pip install pycocotools==2.0.2
    
    # Protobuf Compilation, from ${TF_MODELS_DIR}/research directory
    cd ${TF_MODELS_DIR}/research
    protoc object_detection/protos/*.proto --python_out=.
    

    Please see the Manual protobuf-compiler installation in case of any errors while compiling.

  3. Download and run the preprocess_coco_val.sh script, which uses code from the TensorFlow models repo to convert the validation images to the TF records format. At this point, you should already have the TF_MODELS_DIR path set from step one of this section and the DATASET_DIR set to the location where raw images and annotations were downloaded. The output TF records file will be written in DATASET_DIR, then run the script.

    wget https://raw.githubusercontent.com/IntelAI/models/master/datasets/coco/preprocess_coco_val.sh
    bash preprocess_coco_val.sh
    

    After the script completes, the DATASET_DIR will have a TF records files coco_val.record and validation-00000-of-00001 for the coco validation dataset:

    $ ls $DATASET_DIR
    annotations
    annotations_trainval2017.zip
    coco_val.record
    val2017
    val2017.zip
    validation-00000-of-00001
    

    Please note that the TF records files coco_val.record and validation-00000-of-00001 are equivalent but certain models expect a certain file name. SSD-ResNet34 model uses validation-00000-of-00001 otherwise coco_val.record will be used.

Docker

  1. The container used in the command below includes the prerequisites needed to run the dataset preprocessing script. You will need to mount volumes for the dataset (raw images and annotations, and also where the TF records file will be written), and set the TF_MODELS_BRANCH environment variable to the git commit id for the TensorFlow Model Garden.

    export DATASET_DIR=<Parent directory of the val2017 raw images and annotations files, and also where the output TF records file will be written>
    export TF_MODELS_BRANCH=<git commit id>
    
    docker run \
    --env VAL_IMAGE_DIR=${DATASET_DIR}/val2017 \
    --env ANNOTATIONS_DIR=${DATASET_DIR}/annotations \
    --env TF_MODELS_BRANCH=${TF_MODELS_BRANCH} \
    --env OUTPUT_DIR=${DATASET_DIR} \
    -v ${DATASET_DIR}:${DATASET_DIR} \
    -t intel/object-detection:tf-1.15.2-preprocess-coco-val
    

    After the script completes, the DATASET_DIR will have a TF records files coco_val.record and validation-00000-of-00001 for the coco validation dataset:

    $ ls $DATASET_DIR
    annotations
    annotations_trainval2017.zip
    coco_val.record
    val2017
    val2017.zip
    validation-00000-of-00001
    

    Please note that the TF records files coco_val.record and validation-00000-of-00001 are equivalent but certain models expect a certain file name. SSD-ResNet34 model uses validation-00000-of-00001 otherwise coco_val.record will be used.