From 08949338f49c6beda1302798325445ee66f57dee Mon Sep 17 00:00:00 2001 From: ViktorC Date: Mon, 26 Dec 2022 20:52:27 +0000 Subject: [PATCH] Make the PIDON model loss optional --- pararealml/operators/ml/pidon/loss.py | 19 +++++++++++++------ pararealml/operators/ml/pidon/pi_deeponet.py | 16 +++++----------- 2 files changed, 18 insertions(+), 17 deletions(-) diff --git a/pararealml/operators/ml/pidon/loss.py b/pararealml/operators/ml/pidon/loss.py index 5afb958..37bb64a 100644 --- a/pararealml/operators/ml/pidon/loss.py +++ b/pararealml/operators/ml/pidon/loss.py @@ -13,7 +13,7 @@ class Loss(NamedTuple): diff_eq_loss: tf.Tensor ic_loss: tf.Tensor bc_losses: Optional[Tuple[tf.Tensor, tf.Tensor]] - model_loss: tf.Tensor + model_loss: Optional[tf.Tensor] weighted_total_loss: tf.Tensor def __str__(self): @@ -27,7 +27,8 @@ def __str__(self): f"; Dirichlet BC: {self.bc_losses[0]}; " + f"Neumann BC: {self.bc_losses[1]}" ) - string += f"; Model: {self.model_loss}" + if self.model_loss is not None: + string += f"; Model: {self.model_loss}" return string @classmethod @@ -37,7 +38,7 @@ def construct( diff_eq_loss: tf.Tensor, ic_loss: tf.Tensor, bc_losses: Optional[Tuple[tf.Tensor, tf.Tensor]], - model_loss: tf.Tensor, + model_loss: Optional[tf.Tensor], diff_eq_loss_weights: Sequence[float], ic_loss_weights: Sequence[float], bc_loss_weights: Sequence[float], @@ -66,7 +67,8 @@ def construct( weighted_total_loss += tf.multiply( tf.constant(bc_loss_weights), bc_losses[0] + bc_losses[1] ) - weighted_total_loss += model_loss + if model_loss is not None: + weighted_total_loss += model_loss return Loss( diff_eq_loss, ic_loss, bc_losses, model_loss, weighted_total_loss ) @@ -103,7 +105,8 @@ def mean( if loss.bc_losses: dirichlet_bc_losses.append(loss.bc_losses[0]) neumann_bc_losses.append(loss.bc_losses[1]) - model_losses.append(loss.model_loss) + if loss.model_loss is not None: + model_losses.append(loss.model_loss) mean_diff_eq_loss = tf.reduce_mean(tf.stack(diff_eq_losses), axis=0) mean_ic_loss = tf.reduce_mean(tf.stack(ic_losses), axis=0) @@ -115,7 +118,11 @@ def mean( tf.reduce_mean(tf.stack(neumann_bc_losses), axis=0), ) ) - mean_model_loss = tf.reduce_mean(tf.stack(model_losses), axis=0) + mean_model_loss = ( + tf.reduce_mean(tf.stack(model_losses), axis=0) + if model_losses + else None + ) return cls.construct( mean_diff_eq_loss, diff --git a/pararealml/operators/ml/pidon/pi_deeponet.py b/pararealml/operators/ml/pidon/pi_deeponet.py index b89cfad..ad5b3f8 100644 --- a/pararealml/operators/ml/pidon/pi_deeponet.py +++ b/pararealml/operators/ml/pidon/pi_deeponet.py @@ -264,9 +264,7 @@ def value_and_gradients_function( ) -> Tuple[tf.Tensor, tf.Tensor]: self.set_trainable_parameters(parameters) with AutoDifferentiator() as auto_diff: - loss = self._compute_physics_informed_loss( - full_training_data_batch, True - ) + loss = self._compute_batch_loss(full_training_data_batch, True) value = tf.reduce_sum(loss.weighted_total_loss, keepdims=True) gradients = auto_diff.gradient(value, self.trainable_variables) @@ -365,7 +363,7 @@ def _compute_total_loss( :return: the mean physics-informed loss """ loss_function = ( - partial(self._compute_physics_informed_loss, training=False) + partial(self._compute_batch_loss, training=False) if optimizer is None else partial(self._train, optimizer=optimizer) ) @@ -399,7 +397,7 @@ def _train( :return: the various losses over the batch """ with AutoDifferentiator() as auto_diff: - loss = self._compute_physics_informed_loss(batch, True) + loss = self._compute_batch_loss(batch, True) optimizer.minimize( loss.weighted_total_loss, self.trainable_variables, tape=auto_diff @@ -408,9 +406,7 @@ def _train( return loss @tf.function - def _compute_physics_informed_loss( - self, batch: DataBatch, training: bool - ) -> Loss: + def _compute_batch_loss(self, batch: DataBatch, training: bool) -> Loss: """ Computes and returns the total physics-informed loss over the batch consisting of the mean squared differential equation error, the mean @@ -433,9 +429,7 @@ def _compute_physics_informed_loss( else None ) model_loss = ( - tf.reshape(tf.add_n(self.losses), (1,)) - if self.losses - else tf.constant([0.0]) + tf.reshape(tf.add_n(self.losses), (1,)) if self.losses else None ) return Loss.construct(