-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRF_NTTfromPy.R
167 lines (147 loc) · 4.57 KB
/
RF_NTTfromPy.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#note to chanage the options to options("digits"=22) and options("scipen"=100)
library("ape")
library("phangorn")
library("readtext")
options("digits"=22)
options("scipen"=100)
#Beta function
Beta=function(m){
if(m<=0){ans=1}
else {
ans=1
for (i in 1:m) {
ans=ans*(2*i+1)
}
}
return(ans)
}
# the function for computing the number of internal edges
internaledges <- function(tree,ntip){
intedges=array(0,c(1,ntip-1))
edges=tree$edge
for (i in (2*ntip-1):(ntip+1)) {
children=which(edges[,1]==i)
child1=edges[children[1],2]
child2=edges[children[2],2]
if(child1 <= ntip&child2 <= ntip){intedges[i-ntip]=0}
else if(child1<= ntip & child2 > ntip){intedges[i-ntip]=intedges[child2-ntip]+1}
else if(child2<= ntip & child1 > ntip){intedges[i-ntip]=intedges[child1-ntip]+1}
else {intedges[i-ntip]=intedges[child2-ntip]+intedges[child1-ntip]+2}
}
return(intedges)
}
# the function for computing the number of internal children
internalchildren <- function(tree,v,ntip){
edges=tree$edge
children=which(edges[,1]==v)
child1=edges[children[1],2]
child2=edges[children[2],2]
if(child1 > ntip & child2 > ntip){result=c(2,child1,child2)}
else if(child1 > ntip & child2 <= ntip){result=c(1,child1)}
else if(child2 > ntip & child1 <= ntip){result=c(1,child2)}
else {result=0}
return(result)
}
RF_Convolve=function(tree,n){
tt=0
t=(n-4)*(n-2)*3
L= 2^ceiling(log(t)/log(2))
#L=16384
ntip=n-1
N=tree$Nnode
R=rep(list(matrix(0,(ntip-1),(ntip-1))),N)
edges=internaledges(tree,ntip)
B=c()
for (k in 0:(n-2)) {
B[k+1]=Beta(k)
}
for (v in N:1) {
intchild=internalchildren(tree,v+ntip,ntip)
intedges=edges[v]
if(intchild[1]==0){
R[[v]][1,1]=1
}
else if(intchild[1]==1){
Rchild=R[[intchild[2]-ntip]]
R[[v]][1,intedges+1]=1
R[[v]][2:(ntip-1),1]=rowSums(t(t(Rchild[1:(ntip-2),])*B[1:(ntip-1)]))
R[[v]][2:(ntip-1),2:(ntip-1)]=Rchild[2:(ntip-1),1:((ntip-2))]
}
else {
Rchild1=R[[intchild[2]-ntip]]
Rchild2=R[[intchild[3]-ntip]]
R[[v]][1,intedges+1]=1
R[[v]][3,1]=sum(t(t(Rchild1[1,])*B[1:(ntip-1)]))*sum(t(t(Rchild2[1,])*B[1:(ntip-1)]))
for (s in 4:(ntip-1)) {
R[[v]][s,1]=sum(rowSums(t(t(Rchild1[1:(s-2),])*B[1:(ntip-1)]))*rowSums(t(t(Rchild2[(s-2):1,])*B[1:(ntip-1)])))
}
sum1=matrix(0,(ntip-2),(ntip-2))
sum1[1,1:(ntip-2)]=sum(t(t(Rchild1[1,])*B[1:(ntip-1)]))*Rchild2[1,1:(ntip-2)]
for (s in 3:(ntip-1)) {
temp=colSums(rowSums(t(t(Rchild1[1:(s-1),])*B[1:(ntip-1)]))*Rchild2[(s-1):1,1:(ntip-2)])
sum1[s-1,1:(ntip-2)]=temp
}
sum2=matrix(0,(ntip-2),(ntip-2))
sum2[1,1:(ntip-2)]=sum(t(t(Rchild2[1,])*B[1:(ntip-1)]))*Rchild1[1,1:(ntip-2)]
for (s in 3:(ntip-1)) {
temp=colSums(rowSums(t(t(Rchild2[1:(s-1),])*B[1:(ntip-1)]))*Rchild1[(s-1):1,1:(ntip-2)])
sum2[s-1,1:(ntip-2)]=temp
}
R1=Rchild1[1:(ntip-1),1:(ntip-3)]
#R1aug=numeric(nrow(R1)*(2*ncol(R1)-1))
R1aug=numeric(L)
t=1
for(i in 1:ncol(R1)){
R1aug[t:(t+nrow(R1)-1)]=R1[,i]
t=t+3*nrow(R1)
}
R2=Rchild2[1:(ntip-1),1:(ntip-3)]
#R2aug=numeric(nrow(R2)*(2*ncol(R2)-1))
R2aug=numeric(L)
t=1
for(i in 1:ncol(R2)){
R2aug[t:(t+nrow(R2)-1)]=R2[,i]
t=t+3*nrow(R2)
}
#write(L,"testNTT.txt",ncolumns=L,append = TRUE)
write(R1aug,"testNTT.txt",ncolumns=L,append = TRUE)
write(R2aug,"testNTT.txt",ncolumns=L,append = TRUE)
#read the output of Python
system('python /python_code/ntt_fromR.py')
U=as.matrix(read.csv("outNTT.txt",header = FALSE, quote=""))
Matc=ceiling(length(R1aug)/(3*nrow(R1)))
sum3=matrix(c(U,numeric(Matc*3*nrow(R1)-length(R1aug))),nrow=3*nrow(R1))[1:nrow(R1),1:ncol(R1)]
sum3=cbind(array(0, dim=c(nrow(R1)-1,1)),sum3[2:nrow(R1),])
R[[v]][2:(ntip-1),2:(ntip-1)]=sum1+sum2+sum3
file.remove("testNTT.txt")
}
}
return(R)
}
#==========================================
RsT=function(R,n,s){
B=c()
for (k in 0:(n-2)) {
B[k+1]=Beta(k)
}
rst =sum(t(t(R[[1]][s+1,1:(n-2-s)])*B[1:(n-2-s)]))
return(rst)
}
#Compute the value of q_m(T)
qmT=function(R,n,m){
qmt=0
for (s in m:(n-3)) {
rst=RsT(R,n,s)
qmt=qmt+(factorial(s)/(factorial(m)*factorial(s-m)))*rst*(-1)^(s-m)
}
return(qmt)
}
#this function computes the RF distribution
polynomial=function(tree,n){
Coef=numeric()
R=RF_Convolve(tree,n)
for (i in seq(0,2*(n-3),2)) {
Coef=c(Coef,qmT(R,n,n-3-(i/2)))
}
return(Coef)
}