forked from YuxiXie/SelfEval-Guided-Decoding
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprompt.py
180 lines (157 loc) · 7.72 KB
/
prompt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import regex
def import_name(modulename, name):
""" Import a named object from a module in the context of this function.
modulename: python filename
name: variable/function/class name
"""
try:
module = __import__(modulename, globals(), locals(), [name])
except ImportError:
return None
return vars(module)[name]
def _get_reasoning_type(dt_name):
if dt_name in ['colored_object', 'date_understanding', 'penguin']:
reasoning_type = 'symbolic'
elif dt_name in ['object_counting', 'repeat_copy']:
reasoning_type = 'algorithmic'
elif dt_name in ['csqa', 'saycan', 'sports', 'strategyqa', 'gsm8k_cot']:
reasoning_type = 'commonsense'
else:
reasoning_type = 'arithmetic'
return reasoning_type
def _get_request(raw, dt_name):
reasoning_type = _get_reasoning_type(dt_name)
instruction, in_context = '', ''
if dt_name in [
'gsm8k', 'mawps', 'date_understanding', 'colored_object', 'repeat_copy', 'object_counting',
'strategyqa', 'sports', 'gsm8k_cot',
]:
instruction = 'Answer the following question {}: '.format(
'via chain-of-thought reasoning' if reasoning_type in ['commonsense'] else 'in Python'
)
in_context = raw.strip()[3:].strip() if raw.strip().startswith('Q: ') else raw.strip()
elif dt_name in ['aqua', 'csqa']:
instruction = 'Choose the right answer to answer the following question {}:\n'.format(
'via chain-of-thought reasoning' if reasoning_type in ['commonsense'] else 'in Python'
)
in_context = raw.strip()
elif dt_name in ['svamp', 'asdiv']:
instruction = 'Given the passage, answer the question {}:\n'.format(
'via chain-of-thought reasoning' if reasoning_type in ['commonsense'] else 'in Python'
)
in_context = raw.strip()
elif dt_name in ['tabmwp', 'finqa', 'penguin']:
instruction = 'Given the table, answer the question {}:\n'.format(
'via chain-of-thought reasoning' if reasoning_type in ['commonsense'] else 'in Python'
)
in_context = raw.strip()
else:
assert False, f"cannot support dataset {dt_name}"
return instruction, in_context
def _split_ans(ans_prompt, reasoning_type, dt_name):
if reasoning_type in ['arithmetic', 'symbolic', 'algorithmic']:
examples = ans_prompt.strip().split('\n\n\n\n\n')
to_return = [{"role": "system", "content": f"You are a helpful assistant that generates Python code to answer {reasoning_type} questions. "}]
for example in examples:
qu, soln = example.split('# solution in Python:')
instr, qu = _get_request(qu, dt_name)
soln = soln.strip()
to_return += [
{"role": "user", "content": f"{instr}{qu}"}, {"role": "assistant", "content": soln},
]
return to_return
elif reasoning_type in ['commonsense']:
examples = ans_prompt.strip().split('\n\n\n\n\n')
to_return = [{"role": "system", "content": f"You are a helpful assistant that conducts step-by-step reasoning to answer {reasoning_type} questions. "}]
for example in examples:
qu, soln = example.split('\n\nA:\n')
instr, qu = _get_request(qu, dt_name)
soln = soln.strip()
to_return += [
{"role": "user", "content": f"{instr}{qu}"}, {"role": "assistant", "content": soln},
]
return to_return
def get_prompts(dt_name, return_eval=True, use_chatgpt=False):
reasoning_type = _get_reasoning_type(dt_name)
if reasoning_type == 'arithmetic':
path = ['prompts', dt_name]
else:
path = ['prompts', reasoning_type, dt_name]
modulename = '.'.join(path)
if reasoning_type in ['commonsense']:
ans_prompt = import_name(modulename, 'answer_prompt')
else:
ans_prompt = import_name(modulename, 'code_prompt')
evaluate_prompt = import_name(modulename, 'evaluate_prompt') if return_eval else None
choice_prefix = import_name(modulename, 'choice_prefix') if return_eval else None
return {'ans': _split_ans(ans_prompt, reasoning_type, dt_name) if use_chatgpt else ans_prompt,
'type': reasoning_type, 'eval': evaluate_prompt, 'choice_prefix': choice_prefix}
def get_prompt_inputs(dt_name, prompts, example, use_chatgpt=False):
return_eval = (prompts['eval'] is not None)
qu = example["question"]
prompt = prompts["ans"] if use_chatgpt else f'{prompts["ans"]}\n\n\n\n\n'
prefix = f'{prompts["eval"]}\n\n\n\n\n' if (return_eval and not use_chatgpt) else None # TODO: to implement
if dt_name in ['gsm8k', 'mawps', 'date_understanding', 'colored_object', 'repeat_copy', 'object_counting']:
if use_chatgpt:
instr, _ = _get_request(qu, dt_name)
prompt += [{"role": "user", "content": f"{instr}{qu}"}]
else:
prompt += f'Q: {qu}\n\n# solution in Python:\n\n\n'
if return_eval:
prefix += f'Q: {qu}\n\n# solution in Python:\n\n\n'
elif dt_name in ['aqua']:
options = '\n'.join(example['options'])
if use_chatgpt:
instr, _ = _get_request(qu, dt_name)
prompt += [{"role": "user", "content": f"{instr}Question: {qu}\nAnswer Choices:\n{options}"}]
else:
prompt += f'Question: {qu}\nAnswer Choices:\n{options}\n\n# solution in Python:\n\n\n'
if return_eval:
prefix += f'Question: {qu}\nAnswer Choices:\n{options}\n\n# solution in Python:\n\n\n'
elif dt_name in ['svamp', 'asdiv']:
p, q = example['Body'], example['Question']
if use_chatgpt:
instr, _ = _get_request(qu, dt_name)
prompt += [{"role": "user", "content": f"{instr}Passage: {p}\nQuestion: {q}"}]
else:
prompt += f'Passage: {p}\nQuestion: {q}\n\n# solution in Python:\n\n\n'
if return_eval:
prefix += f'Passage: {p}\nQuestion: {q}\n\n# solution in Python:\n\n\n'
elif dt_name in ['tabmwp', 'finqa']:
if use_chatgpt:
instr, _ = _get_request(qu, dt_name)
prompt += [{"role": "user", "content": f"{instr}{example['table']}\nQuestion: {qu}"}]
else:
prompt += f'{example["table"]}\nQuestion: {qu}\n\n# solution in Python:\n\n\n'
if return_eval:
prefix += f'{example["table"]}\nQuestion: {qu}\n\n# solution in Python:\n\n\n'
elif dt_name in ['penguin']:
if use_chatgpt:
instr, _ = _get_request(qu, dt_name)
prompt += [{"role": "user", "content": f'{instr}"""\n{example["table"]}\n\nQuestion: {qu}"""'}]
else:
prompt += f'"""\n{example["table"]}\n\nQuestion: {qu}"""\n\n# solution in Python:\n\n\n'
if return_eval:
prefix += f'"""\n{example["table"]}\n\nQuestion: {qu}"""\n\n# solution in Python:\n\n\n'
elif dt_name in ['strategyqa', 'sports', 'gsm8k_cot']:
if use_chatgpt:
instr, _ = _get_request(qu, dt_name)
prompt += [{"role": "user", "content": f"{instr}{qu}"}]
else:
prompt += f'Q: {qu}\n\nA:\n'
if return_eval:
prefix += f'Q: {qu}\n\nA:\n'
elif dt_name in ['saycan']:
prompt += f'Human: {qu}\n\n'
if return_eval:
prefix += f'Human: {qu}\n\n'
elif dt_name in ['csqa']:
options = '\n'.join(example['options'])
if use_chatgpt:
instr, _ = _get_request(qu, dt_name)
prompt += [{"role": "user", "content": f"{instr}Q: {qu}\nAnswer Choices:\n{options}"}]
else:
prompt += f'Q: {qu}\nAnswer Choices:\n{options}\n\nA:\n'
if return_eval:
prefix += f'Q: {qu}\nAnswer Choices:\n{options}\n\nA:\n'
return prompt, prefix