-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathhydCSV2GTFS.py
767 lines (556 loc) · 26 KB
/
hydCSV2GTFS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
# hydCSV2GTFS.py
def hydGTFSfunc(files, payload):
#files
returnJson = {}
returnJson['message'] = ''
csvsFlag = True
routes = payload.get('routes')
numRoutes = len(routes)
missingRules = payload.get('missingStops')
outputFolder = 'hydcsv_related/output/'
##################
# initiating ZIP file
zf = zipfile.ZipFile(uploadFolder + 'hydMetroGTFS.zip', mode='w')
##################
# feed_info
logmessage('\nPreparing feed_info table.')
feedInfoDF = pd.DataFrame( [payload.get('feed_info',{})])
feedInfoCols = ['feed_publisher_name','feed_publisher_url','feed_lang','feed_version']
feedInfoDF.to_csv(outputFolder+'feed_info.txt', index=None,\
columns=feedInfoCols)
returnJson['message'] += '<a target="_blank" href="'+ outputFolder+'feed_info.txt">feed_info file</a> created with %d entries.<br>'%len(feedInfoDF)
logmessage('feed_info.txt created, %d entries'%len(feedInfoDF))
zf.write(outputFolder+'feed_info.txt', arcname='feed_info.txt', compress_type=zipfile.ZIP_DEFLATED )
##################
# Stops
logmessage('\nPreparing stops table.')
stopsArray = []
for row in payload.get('stopsData',[]):
newrow = row.copy()
# use .copy() to ensure changes don't happen upstream. from https://stackoverflow.com/questions/43895430/python-append-an-original-object-vs-append-a-copy-of-object
newrow['zone_id'] = row['stop_id']
newrow['location_type'] = 1
newrow['wheelchair_boarding'] = 1
stopsArray.append(newrow.copy())
newrow['location_type'] = 0
newrow['parent_station'] = row['stop_id']
newrow['stop_id'] = row['stop_id'] + '1'
newrow['stop_name'] = row['stop_name'] + ' Platform 1'
stopsArray.append(newrow.copy())
newrow['stop_id'] = row['stop_id'] + '2'
newrow['stop_name'] = row['stop_name'] + ' Platform 2'
stopsArray.append(newrow.copy())
# add stops from Stops-Override, payload['replaceStops']:
stopsSoFar = [ x['stop_id'] for x in stopsArray ]
for row in payload['replaceStops']:
if row['replace_with'] not in stopsSoFar:
newrow = [ x for x in stopsArray if x['stop_id'] == row['stop_id'] ][0].copy()
logmessage('filtered row:',newrow)
newrow['stop_id'] = row['replace_with']
newrow['stop_name'] = newrow['stop_name'][:-1] + row['replace_with'][-1]
logmessage('Adding row to stops: ',newrow)
stopsArray.append(newrow.copy())
stopsSoFar.append(row['replace_with'])
stopCols = ['stop_id', 'stop_name', 'stop_lat', 'stop_lon', \
'zone_id', 'location_type', 'parent_station', \
'wheelchair_boarding']
pd.DataFrame(stopsArray).to_csv(outputFolder+'stops.txt', index=None, columns=stopCols)
returnJson['message'] += '<a target="_blank" href="'+ outputFolder+'stops.txt">stops file</a> created with %d entries.<br>'%len(stopsArray)
logmessage('stops.txt created, %d entries.'%len(stopsArray) )
zf.write(outputFolder+'stops.txt', arcname='stops.txt', compress_type=zipfile.ZIP_DEFLATED )
###################
# Agency
logmessage('\nPreparing agency table.')
agencyDF = pd.DataFrame({
'agency_id': [payload['agency']['id']], \
'agency_name': payload['agency']['name'], \
'agency_url': payload['agency']['url'], \
'agency_timezone': payload['agency']['timezone']
})
agencyCols = ['agency_id','agency_name','agency_url','agency_timezone']
agencyDF.to_csv(outputFolder+'agency.txt', index=None,\
columns=agencyCols)
returnJson['message'] += '<a target="_blank" href="'+ outputFolder+'agency.txt">agency file</a> created with %d entries.<br>'%len(agencyDF)
logmessage('agency.txt created, %d entries'%len(agencyDF))
zf.write(outputFolder+'agency.txt', arcname='agency.txt', compress_type=zipfile.ZIP_DEFLATED )
###################
# Calendar
logmessage('\nPreparing calendar table.')
calendarCols = ['service_id','monday','tuesday','wednesday','thursday','friday','saturday','sunday','start_date','end_date']
calendarDF = pd.DataFrame({
'service_id' : ['WK','SU'],
'monday' : [1,0],
'tuesday' : [1,0],
'wednesday' : [1,0],
'thursday' : [1,0],
'friday' : [1,0],
'saturday' : [1,0],
'sunday' : [0,1],
'start_date' : payload['agency']['start'],
'end_date' : payload['agency']['end']
}, columns=calendarCols)
# columms= needed for specifying order. Then when writing csv it preserves order.
calendarDF.to_csv(outputFolder+'calendar.txt', index=None)
returnJson['message'] += '<a target="_blank" href="'+ outputFolder+'calendar.txt">calendar file</a> created with %d entries.<br>'%len(calendarDF)
logmessage('calendar.txt created, %d entries'%len(calendarDF))
zf.write(outputFolder+'calendar.txt', arcname='calendar.txt', compress_type=zipfile.ZIP_DEFLATED )
###################
# Routes
logmessage('\nPreparing routes table.')
routesDF = pd.DataFrame( columns=['route_id','route_short_name',\
'route_long_name','route_type','agency_id',\
'route_color','route_text_color'] )
for i,row in enumerate(routes):
routesDF.loc[i] = [ row['id'], row['short_name'], \
row['long_name'], 1, payload['agency']['id'], \
row['color'], row['text_color'] ]
routesDF.to_csv(outputFolder+'routes.txt', index=None)
returnJson['message'] += '<a target="_blank" href="'+ outputFolder+'routes.txt">routes file</a> created with %d entires.<br>'%len(routesDF)
logmessage('routes.txt created, %d entries'%len(routesDF))
zf.write(outputFolder+'routes.txt', arcname='routes.txt', compress_type=zipfile.ZIP_DEFLATED )
###################
# Shapes
logmessage('\nPreparing shapes table.')
shapesArray = []
for i in range(numRoutes):
route_id = routesDF.loc[i]['route_id']
fileHolder = files.get('route%d_shape'%i,None)
if fileHolder is None:
returnJson['message'] +='Shape for route %d not loaded.<br>'%(i+1)
continue
returnJson['message'] +='Shape for route %d : '%(i+1) + fileHolder[0].filename + '<br>'
shapefileContent = json.loads(fileHolder[0]['body'].decode('UTF-8'))
shapesArray += geoJson2shapeHYD(route_id, shapefileContent)
shapeCols = ['shape_id','shape_pt_sequence','shape_pt_lat','shape_pt_lon','shape_dist_traveled']
if len(shapesArray):
shapesDF = pd.DataFrame(shapesArray).to_csv(outputFolder+'shapes.txt', index=None, columns=shapeCols)
returnJson['message'] += '<a target="_blank" href="'+ outputFolder+'shapes.txt">shapes file</a> created with %d entries.<br>'%len(shapesArray)
logmessage('shapes.txt created, %d entries'%len(shapesArray))
zf.write(outputFolder+'shapes.txt', arcname='shapes.txt', compress_type=zipfile.ZIP_DEFLATED )
else:
returnJson['message'] += 'No shapes file created.<br>'
logmessage('No shapes file created.')
###################
# Fare Attributes
logmessage('\nPreparing fare_attributes table.')
fareAttr = pd.DataFrame(payload.get('fareAttributes',[]))
fareAttr['currency_type'] = 'INR'
fareAttr['payment_method'] = 1
fareAttr['transfers'] = ''
fareAttr['agency_id'] = 'HMRL'
fareAttr.to_csv(outputFolder+'fare_attributes.txt', index=False, columns=list(fareAttr))
returnJson['message'] += '<a target="_blank" href="'+ outputFolder+'fare_attributes.txt">fare_attributes file</a> created with %d entries.<br>'%len(fareAttr)
logmessage('fare_attributes.txt created, %d entries'%len(fareAttr))
zf.write(outputFolder+'fare_attributes.txt', arcname='fare_attributes.txt', compress_type=zipfile.ZIP_DEFLATED )
###################
# Fare Rules
# one change from existing model : now keeping the figures in, to make it easier for the user. The KMRL model of using F1 F2 etc is confusing.
# a replacement at end ought to do the job.
if files.get('fareChart',False):
logmessage('\nPreparing fare_rules table.')
faresPivotedString = files['fareChart'][0]['body']
fares_pivoted = pd.read_csv( io.BytesIO(faresPivotedString) )
keepcols=['origin_id']
var_header='destination_id'
value_header='fare_id'
sortby=['origin_id','destination_id','fare_id']
firstCol = keepcols[0]
if list(fares_pivoted)[0] != firstCol:
fares_pivoted.rename(columns ={list(fares_pivoted)[0]: 'origin_id'}, inplace=True)
# rename first column, regardless of its orginal value or blank. from https://stackoverflow.com/a/26336314/4355695
# un-pivoting
fares_unpivoted = pd.melt(fares_pivoted, id_vars=keepcols, \
var_name=var_header, value_name=value_header)\
.sort_values(by=sortby)
# drop all rows having NaN values. from https://stackoverflow.com/a/13434501/4355695
fares_unpivoted_clean = fares_unpivoted.dropna()
# doing a find-replace for fare_id's
priceReplacementJson = { x['price'] : x['fare_id'] \
for x in payload['fareAttributes'] }
logmessage('priceReplacementJson:',priceReplacementJson)
fares_unpivoted_clean.fare_id.replace(priceReplacementJson, inplace=True)
# writing out
fares_unpivoted_clean.to_csv(outputFolder+'fare_rules.txt', index=False)
returnJson['message'] += '<a target="_blank" href="'+ outputFolder+'fare_rules.txt">fare_rules file</a> created with %d entries.<br>'%len(fares_unpivoted_clean)
logmessage('fare_rules.txt created, %d entries'%len(fares_unpivoted_clean))
zf.write(outputFolder+'fare_rules.txt', arcname='fare_rules.txt', compress_type=zipfile.ZIP_DEFLATED )
else:
returnJson['message'] += 'No fares chart uploaded so not making fare_rules file.<br>'
logmessage('No fares chart uploaded so not making fare_rules file.')
################
# Transfers
logmessage('\nPreparing transfers table.')
transfersPairs = payload.get('transfers',[])
transfersArray = []
for pair in transfersPairs:
row = {}
row['from_stop_id'] = pair[0]
row['to_stop_id'] = pair[1]
row['transfer_type'] = 0
transfersArray.append(row.copy())
transfersDF = pd.DataFrame(transfersArray)
# writing out
transfersDF.to_csv(outputFolder+'transfers.txt', index=False)
returnJson['message'] += '<a target="_blank" href="'+ outputFolder+'transfers.txt">transfers file</a> created with %d entries.<br>'%len(transfersDF)
logmessage('transfers.txt created, %d entries'%len(transfersDF))
zf.write(outputFolder+'transfers.txt', arcname='transfers.txt', compress_type=zipfile.ZIP_DEFLATED )
################
# Translations
logmessage('\nPreparing translations table.')
translationSource = payload.get('translations',[])
translationsArray = []
for line in translationSource:
row = {}
row['trans_id'] = line['English']
if len(line.get('Telegu','')):
row['lang'] = 'te' #Telegu
row['translation'] = line['Telegu']
translationsArray.append(row.copy())
if len(line.get('Urdu','')):
row['lang'] = 'ur' #Urdu
row['translation'] = line['Urdu']
translationsArray.append(row.copy())
if len(line.get('Hindi','')):
row['lang'] = 'hi' #Hindi
row['translation'] = line['Hindi']
translationsArray.append(row.copy())
translationsDF = pd.DataFrame(translationsArray)
# writing out
colsOrder = ['trans_id','lang','translation']
translationsDF.to_csv(outputFolder+'translations.txt', index=False, columns=colsOrder)
returnJson['message'] += '<a target="_blank" href="'+ outputFolder+'translations.txt">translations file</a> created with %d entries.<br>'%len(translationsDF)
logmessage('translations.txt created, %d entries'%len(translationsDF))
zf.write(outputFolder+'translations.txt', arcname='translations.txt', compress_type=zipfile.ZIP_DEFLATED )
######################################
# Trips and stop_times
logmessage('\nPreparing stop_times and trips tables.')
############
# before processing, first check if all CSVs have been uploaded or not
for i in range(numRoutes):
for day in ['WK','SU']:
fileHolder = files.get('route' + str(i) + day,None)
if fileHolder is None:
csvsFlag = False
else:
logmessage(fileHolder[0].filename)
if not csvsFlag:
logmessage('All routes CSVs have NOT been uploaded.')
returnJson['csvsStatus'] = False
returnJson['status'] = False
returnJson['message'] += 'All routes CSVs have NOT been uploaded.<br>'
return returnJson
else:
returnJson['csvsStatus'] = True
returnJson['message'] += 'All routes CSVs have been uploaded.<br>'
# initiating dataframes that will collect stop_times and trips entries
stop_times_collectorDF = pd.DataFrame()
trips_collectorDF = pd.DataFrame()
# loop through routes and service_id's
for i in range(numRoutes):
for service_id in ['WK','SU']:
logmessage('i:',i,' service_id:',service_id)
route_id = routes[i]['id']
logmessage('route_id:',route_id)
fileHolder = files.get('route%d%s'%(i,service_id),None)
logmessage(fileHolder[0]['filename'])
df = pd.read_csv( io.BytesIO(fileHolder[0]['body']) )
# reading csv directly from bytestring received in the formdata.
# from https://stackoverflow.com/a/20697069/4355695
#######
df.columns = df.columns.str.strip().str.lower().str.replace(' ', '').str.replace('(', '').str.replace(')', '')
# cleanup column names. from https://medium.com/@chaimgluck1/working-with-pandas-fixing-messy-column-names-42a54a6659cd
try:
df = df[['runid','rundescription','tripid','platform','arrivaltime','departuretime']]
# cut out unnecessary columns
except KeyError as e:
returnJson['status'] = False
returnJson['message'] += 'Invalid CSV file:' + fileHolder[0]['filename']
return returnJson
#######
# build accepted stop values : suffix 1 and 2 to sequence
# logmessage(routes[i]['sequence'])
acceptedStops = [ x + '1' for x in routes[i]['sequence'] ] + \
[ x + '2' for x in routes[i]['sequence'] ]
# logmessage('acceptedStops :', acceptedStops)
# keep ony the rows that match accepted stops
df = df[ df['platform'].isin(acceptedStops)]
# from https://stackoverflow.com/a/12065904/4355695
logmessage('Filtered table down to accepted stops values, length:',len(df))
#######
# make index as a column so we can sort by it. from https://stackoverflow.com/a/20461206/4355695
df.reset_index(level=0, inplace=True)
# make time column having departuretime as a pandas time object, so we can sort by it.
# from https://codeburst.io/dealing-with-datetimes-like-a-pro-in-pandas-b80d3d808a7f
df['time'] = pd.to_datetime(df['departuretime'], format='%H:%M:%S')
# sort by: ['runid','rundescription','tripid','index']
df.sort_values(['runid','rundescription','tripid','time','index'], inplace=True)
#######
# split into dfs by trip, and exclude invalid short trips
logmessage('Intial number of trips in file:,',len(df.tripid.unique().tolist()))
# have to cut out trips whose length is below 4 less than route sequence length.
threshold_triplen = len(routes[i]['sequence']) - 4
logmessage('Min allowed length of a trip:',threshold_triplen)
# from https://stackoverflow.com/a/43998102/4355695 .
# Split the df into dict of df's by grouping by tripid.
tripsDict = { str(key): df.loc[value] \
for key, value in df.groupby("tripid").groups.items() \
if len(value) >= threshold_triplen }
# Advantage of this over normal looping : we don't need to get the list of tripid's first.
# logmessage('Created tripsDict having each trip\'s sequence as a separate df')
tripsList = list(tripsDict.keys())
logmessage('After eliminating invalid length trips, total trips in table:',len(tripsList))
#######
# have to get rid of all trips that end before 6am.
# to do that, just find the last departuretime, take hh out and check if its less than 6.
# also just publish the borderline trips: that start before 6am and end after 6am.
for trip in tripsList:
tripdf = tripsDict.get(trip)
# get last departure time
last_dep = tripdf.departuretime.tolist()[-1]
last_dep_h = last_dep.split(':')[0]
# logmessage('For trip',trip,', last dep time h:',int(last_dep_h))
if int(last_dep_h) < 6:
logmessage( 'Removing pre-6am trip',trip )
tripsDict.pop(trip,None)
else:
# implicitly this will run on for int(last_dep_h) >= 6
# get first departure time
first_dep = tripdf.departuretime.tolist()[0]
first_dep_h = first_dep.split(':')[0]
if int(first_dep_h) < 6:
logmessage( 'Watch out for borderline trip',trip)
# logmessage(tripdf)
# make new tripsList
tripsList = list(tripsDict.keys())
logmessage('After eliminating pre-6am trips, total trips in table:',len(tripsList))
#######
stop_times_collector = []
trips_collector = []
sequence = []
sequence.append( routes[i]['sequence'].copy() )
sequence.append( sequence[0].copy() )
sequence[1].reverse()
sequenceString0 = ','.join(sequence[0])
sequenceString1 = ','.join(sequence[1])
# LOOP: Processing each trip
for trip in tripsList:
tripdf = tripsDict.get(trip)[['platform','arrivaltime','departuretime']].copy()
##################
# find direction_id
stopsSequenceString = ','.join( [ x[:-1] for x in tripdf.platform.tolist() ] )
# make the trip's stops into an array,
# strip out suffix,
# join to make one string
if stopsSequenceString in sequenceString0:
# this trip id has direciton_id: 0
direction_id = 0
elif stopsSequenceString in sequenceString1:
direction_id = 1
else:
logmessage('ALERT! this trip is NOT in any sequence.', trip, stopsSequence)
continue
#######
# find the suffix to put it on top of stop_id below.
suffix = tripdf['platform'].tolist()[1][-1]
#######
# let's CONSTRUCT the trip as it should be, from the official sequence.
# then copy in arrival, dep times from the df by looking up stop_id in platform column
stop_times_onetrip = []
for n,base_stop_id in enumerate(sequence[direction_id]):
stop_id = base_stop_id + suffix
strow = {}
strow['stop_sequence'] = n+1
# waiiit, the stop_id's don't have any 1,2 suffix, that needs to be found out!
strow['stop_id'] = stop_id
dfentry = tripdf[ tripdf.platform == stop_id ].to_dict('records')
# logmessage('\nmatching entry in df:\n',dfentry)
if len(dfentry):
if len( dfentry[0].get('arrivaltime','')) > 5:
# in BLU route, some arrivaltime values are '-'. so protecting against that.
# This value gets assigned later in missingRules loop.
strow['arrival_time'] = get_time( get_sec( dfentry[0].get('arrivaltime') ))
if len( dfentry[0].get('departuretime','')) > 5:
# though not felt needed, putting in this precaution for possible blank departure times too
strow['departure_time'] = get_time( get_sec( dfentry[0].get('departuretime') ))
# doing get_time( get_sec( to render the time strings properly (hh:mm:ss)
strow['timepoint'] = 1
else:
strow['timepoint'] = 0
stop_times_onetrip.append(strow)
#######
# 2nd Run:
# loop through stop_times_onetrip again, with enumerator,
# to find and populate timings for missing stops using missingRules
for n,row in enumerate(stop_times_onetrip):
stop_id = row.get('stop_id')
timepoint = row.get('timepoint')
# load missingRule for this stop_id if present:
rule = False
for mRow in missingRules:
if mRow['route_id'] == route_id and mRow['stop_id'] == stop_id:
rule = mRow
if rule and timepoint == 0:
# logmessage('Missing stop found!',stop_id)
benchmark_where = getInt(rule,'benchmark_where')
benchmark_column = rule.get('benchmark_column')
bench_n = n + benchmark_where
# locate benchmark by traversing to offset row in this trip's stop_times array, and pick designated column
benchmark_timestring = stop_times_onetrip[bench_n][benchmark_column]
# logmessage('benchmark_timestring:',benchmark_timestring)
benchmark = get_sec(benchmark_timestring)
arrival_time_offset = getInt(rule,'arrival_time_offset')
if arrival_time_offset:
row['arrival_time'] = get_time( benchmark + arrival_time_offset)
departure_time_offset = getInt(rule,'departure_time_offset')
if departure_time_offset:
row['departure_time'] = get_time( benchmark + departure_time_offset)
benchmark_arrival_change = getInt(rule,'benchmark_arrival_change')
if benchmark_arrival_change:
stop_times_onetrip[bench_n]['arrival_time'] = get_time( benchmark + benchmark_arrival_change)
benchmark_departure_change = getInt(rule,'benchmark_departure_change')
if benchmark_departure_change:
stop_times_onetrip[bench_n]['departure_time'] = get_time( benchmark + benchmark_departure_change)
# logmessage('Missing data filled for stop:',stop_id,'sequence:',i)
#########
# create trip_id for this trip
first_dep = stop_times_onetrip[0].get('departure_time','')\
.replace(':','')[:4]
if not len(first_dep): logmessage('trip',trip,' not having first departure time.')
trip_id = route_id + '.' + service_id + '.' + str(direction_id) + '.' + first_dep
# create trip_short_name
trip_short_name = stop_times_onetrip[0].get('departure_time','').replace(':','.')[:5] \
+ ' ' + routes[i]['short_name'] + ' ' \
+ ( 'Onward' if direction_id==0 else 'Return' )
#########
# assigning formulated trip_id to stop_times array
for row in stop_times_onetrip:
row['trip_id'] = trip_id
row['origtrip'] = trip
##################
# stop_times data for this trip is ready. Appending it to the collector array.
stop_times_collector += stop_times_onetrip
##################
# creating row for trips entry
shape_id = route_id + '_' + str(direction_id)
triprow = { 'route_id': route_id, 'service_id':service_id, \
'trip_id':trip_id, 'direction_id': direction_id, \
'shape_id':shape_id, 'wheelchair_accessible':1,\
'origtrip': trip, 'trip_short_name':trip_short_name }
trips_collector.append(triprow)
##################
# full-file-level operations on collected trips and stop_times
stop_times_onefileDF = pd.DataFrame(stop_times_collector)
# payload['replaceStops']
stopsOverrideJson = { x['stop_id']:x['replace_with'] \
for x in payload['replaceStops'] \
if x['route_id'] == route_id }
# creating a dict with substitutions that can directly be passed to pandas
logmessage('stopsOverrideJson:',stopsOverrideJson)
stop_times_onefileDF.stop_id.replace(stopsOverrideJson, inplace=True)
stop_times_collectorDF = pd.concat([stop_times_collectorDF, \
stop_times_onefileDF],\
ignore_index=True)
trips_collectorDF = pd. concat( [trips_collectorDF,\
pd.DataFrame(trips_collector)],\
ignore_index=True)
# end of service_id loop
# end of routes loop
# finally, writing to CSV
# stop_times
colsOrder = ['trip_id','stop_sequence','stop_id',
'arrival_time','departure_time', 'timepoint','origtrip']
stop_times_collectorDF.to_csv(outputFolder+'stop_times.txt', index=None, columns=colsOrder)
# now trips
colsOrder = ['route_id','service_id','direction_id','trip_id',\
'trip_short_name', 'shape_id','wheelchair_accessible', 'origtrip']
trips_collectorDF.to_csv(outputFolder+'trips.txt', index=None, columns=colsOrder)
returnJson['message'] += '<a target="_blank" href="'+ outputFolder+'stop_times.txt">stop_times file</a> created with %d entries.<br>'%len(stop_times_collectorDF)
logmessage('stop_times.txt created, %d entries'%len(stop_times_collectorDF))
zf.write(outputFolder+'stop_times.txt', arcname='stop_times.txt', compress_type=zipfile.ZIP_DEFLATED )
returnJson['message'] += '<a target="_blank" href="'+ outputFolder+'trips.txt">trips file</a> created with %d entries.<br>'%len(trips_collectorDF)
logmessage('trips.txt created, %d entries'%len(trips_collectorDF))
zf.write(outputFolder+'trips.txt', arcname='trips.txt', compress_type=zipfile.ZIP_DEFLATED )
###################
# end
zf.close()
importGTFS('hydMetroGTFS.zip')
returnJson['message'] += '<a target="_blank" href="' + uploadFolder + 'hydMetroGTFS.zip">hydMetroGTFS.zip</a> GTFS zip file created, and imported to DB.<br>'
returnJson['message'] += '<a target="_blank" href="' + logFolder + 'log.txt" target="_blank">Click here</a> for detailed logs.<br>'
returnJson['status'] = True
return returnJson
#######################
def geoJson2shapeHYD(route_id, shapefileContent, shapefileRev=None):
output_array = []
try:
coordinates = shapefileContent['features'][0]['geometry']['coordinates']
except KeyError as e:
logmessage('Invalid geojson file.')
return False
prevlat = coordinates[0][1]
prevlon = coordinates[0][0]
dist_traveled = 0
i = 0
for item in coordinates:
newrow = OrderedDict()
newrow['shape_id'] = route_id + '_0'
newrow['shape_pt_lat'] = item[1]
newrow['shape_pt_lon'] = item[0]
calcdist = lat_long_dist(prevlat,prevlon,item[1],item[0])
dist_traveled = dist_traveled + calcdist
newrow['shape_dist_traveled'] = float(format( dist_traveled , '.2f' ))
#rounding. From https://stackoverflow.com/a/28142318/4355695
i = i + 1
newrow['shape_pt_sequence'] = i
output_array.append(newrow)
prevlat = item[1]
prevlon = item[0]
# Reverse trip now.. either same shapefile in reverse or a different shapefile
if( shapefileRev ):
with open(shapefileRev, encoding='utf8') as g:
data2 = json.load(g)
logmessage('Loaded',shapefileRev)
try:
coordinates = data2['features'][0]['geometry']['coordinates']
except:
logmessage('Invalid geojson file ' + shapefileRev)
return False
else:
coordinates.reverse()
prevlat = coordinates[0][1]
prevlon = coordinates[0][0]
dist_traveled = 0
i = 0
for item in coordinates:
newrow = OrderedDict()
newrow['shape_id'] = route_id + '_1'
newrow['shape_pt_lat'] = item[1]
newrow['shape_pt_lon'] = item[0]
calcdist = lat_long_dist(prevlat,prevlon,item[1],item[0])
dist_traveled = float(format( dist_traveled + calcdist , '.2f' ))
newrow['shape_dist_traveled'] = float(format( dist_traveled , '.2f' ))
#rounding. From https://stackoverflow.com/a/28142318/4355695
i = i + 1
newrow['shape_pt_sequence'] = i
output_array.append(newrow)
prevlat = item[1]
prevlon = item[0]
return output_array
####################################
def get_sec(time_str):
'''
convert a hh:mm:ss string into seconds
'''
h, m, s = time_str.split(':')
return int(h) * 3600 + int(m) * 60 + int(s)
####################################
def get_time(n):
'''
convert a seconds int value into a hh:mm:ss string
'''
return time.strftime('%H:%M:%S', time.gmtime(n))
def getInt(rule,key,default=0):
test = rule.get(key,default)
if test == '' or test==False or test==True:
return 0
else:
return int(test)