forked from mlcommons/inference
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtf_estimator_SUT.py
162 lines (126 loc) · 6.13 KB
/
tf_estimator_SUT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# coding=utf-8
# Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved.
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import array
import json
import os
import sys
sys.path.insert(0, os.path.join(os.getcwd(), "DeepLearningExamples", "TensorFlow", "LanguageModeling", "BERT"))
sys.path.insert(0, os.getcwd())
import mlperf_loadgen as lg
import modeling
import numpy as np
import tensorflow as tf
from squad_QSL import get_squad_QSL
# Allow TF to increase GPU memory usage dynamically to prevent cuBLAS init problems.
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.compat.v1.Session(config=config)
class BERT_TF_ESTIMATOR_SUT():
def __init__(self, batch_size=8):
print("Loading TF model...")
bert_config = modeling.BertConfig.from_json_file("bert_config.json")
model_fn = self.model_fn_builder(
bert_config=bert_config,
init_checkpoint="build/data/bert_tf_v1_1_large_fp32_384_v2/model.ckpt-5474")
self.estimator = tf.estimator.Estimator(model_fn=model_fn)
self.batch_size = batch_size
print("Constructing SUT...")
self.sut = lg.ConstructSUT(self.issue_queries, self.flush_queries, self.process_latencies)
print("Finished constructing SUT.")
self.qsl = get_squad_QSL()
def issue_queries(self, query_samples):
input_ids = np.zeros((len(query_samples), 1, 384), dtype=np.int32)
input_mask = np.zeros((len(query_samples), 1, 384), dtype=np.int32)
segment_ids = np.zeros((len(query_samples), 1, 384), dtype=np.int32)
for sample_idx in range(len(query_samples)):
eval_features = self.qsl.get_features(query_samples[sample_idx].index)
input_ids[sample_idx, ...] = np.array(eval_features.input_ids)
input_mask[sample_idx, ...] = np.array(eval_features.input_mask)
segment_ids[sample_idx, ...] = np.array(eval_features.segment_ids)
def input_fn():
inputs = {
"input_ids": input_ids,
"input_mask": input_mask,
"segment_ids": segment_ids
}
return tf.data.Dataset.from_tensor_slices(inputs)
for i, result in enumerate(self.estimator.predict(input_fn)):
logits = [float(x) for x in result["logits"].flat]
response_array = array.array("B", np.array(logits).astype(np.float32).tobytes())
bi = response_array.buffer_info()
response = lg.QuerySampleResponse(query_samples[i].id, bi[0], bi[1])
lg.QuerySamplesComplete([response])
def flush_queries(self):
pass
def process_latencies(self, latencies_ns):
pass
def __del__(self):
print("Finished destroying SUT.")
def create_model(self, bert_config, is_training, input_ids, input_mask, segment_ids, use_one_hot_embeddings):
"""Creates a classification model."""
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings,
compute_type=tf.float32)
final_hidden = model.get_sequence_output()
final_hidden_shape = modeling.get_shape_list(final_hidden, expected_rank=3)
batch_size = final_hidden_shape[0]
seq_length = final_hidden_shape[1]
hidden_size = final_hidden_shape[2]
output_weights = tf.get_variable(
"cls/squad/output_weights", [2, hidden_size],
initializer=tf.truncated_normal_initializer(stddev=0.02))
output_bias = tf.get_variable(
"cls/squad/output_bias", [2], initializer=tf.zeros_initializer())
final_hidden_matrix = tf.reshape(final_hidden, [batch_size * seq_length, hidden_size])
logits = tf.matmul(final_hidden_matrix, output_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, output_bias)
logits = tf.reshape(logits, [batch_size, seq_length, 2])
return logits
# logits = tf.transpose(logits, [2, 0, 1])
# unstacked_logits = tf.unstack(logits, axis=0, name='unstack')
# (start_logits, end_logits) = (unstacked_logits[0], unstacked_logits[1])
# return (start_logits, end_logits)
def model_fn_builder(self, bert_config, init_checkpoint, use_one_hot_embeddings=False):
"""Returns `model_fn` closure for Estimator."""
def model_fn(features, labels): # pylint: disable=unused-argument
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
logits = self.create_model(
bert_config=bert_config,
is_training=False,
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings)
tvars = tf.compat.v1.trainable_variables()
initialized_variable_names = {}
(assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
tf.compat.v1.train.init_from_checkpoint(init_checkpoint, assignment_map)
predictions = {
"logits": logits
}
output_spec = tf.estimator.EstimatorSpec(
mode=tf.estimator.ModeKeys.PREDICT, predictions=predictions)
return output_spec
return model_fn
def get_tf_estimator_sut():
return BERT_TF_ESTIMATOR_SUT()