forked from mlcommons/inference
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTask043_BraTS_2019.py
135 lines (114 loc) · 4.73 KB
/
Task043_BraTS_2019.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
# Copyright 2020 Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is copied from nnUnet/nnunet/dataset_conversion/Task043_BraTS_2019.py, except that
# the validation/test set part is removed and downloaded_data_dir is now configurable.
import argparse
import numpy as np
from collections import OrderedDict
import os
import sys
sys.path.insert(0, os.path.join(os.getcwd(), "nnUnet"))
from batchgenerators.utilities.file_and_folder_operations import *
from nnunet.paths import nnUNet_raw_data
import SimpleITK as sitk
import shutil
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--downloaded_data_dir", default="build/MICCAI_BraTS_2019_Data_Training", help="path to MICCAI_BraTS_2019_Data_Training")
args = parser.parse_args()
return args
def copy_BraTS_segmentation_and_convert_labels(in_file, out_file):
# use this for segmentation only!!!
# nnUNet wants the labels to be continuous. BraTS is 0, 1, 2, 4 -> we make that into 0, 1, 2, 3
img = sitk.ReadImage(in_file)
img_npy = sitk.GetArrayFromImage(img)
uniques = np.unique(img_npy)
for u in uniques:
if u not in [0, 1, 2, 4]:
raise RuntimeError('unexpected label')
seg_new = np.zeros_like(img_npy)
seg_new[img_npy == 4] = 3
seg_new[img_npy == 2] = 1
seg_new[img_npy == 1] = 2
img_corr = sitk.GetImageFromArray(seg_new)
img_corr.CopyInformation(img)
sitk.WriteImage(img_corr, out_file)
def main():
args = get_args()
"""
REMEMBER TO CONVERT LABELS BACK TO BRATS CONVENTION AFTER PREDICTION!
"""
task_name = "Task043_BraTS2019"
downloaded_data_dir = args.downloaded_data_dir
target_base = join(nnUNet_raw_data, task_name)
target_imagesTr = join(target_base, "imagesTr")
target_imagesVal = join(target_base, "imagesVal")
target_imagesTs = join(target_base, "imagesTs")
target_labelsTr = join(target_base, "labelsTr")
maybe_mkdir_p(target_imagesTr)
maybe_mkdir_p(target_imagesVal)
maybe_mkdir_p(target_imagesTs)
maybe_mkdir_p(target_labelsTr)
patient_names = []
for tpe in ["HGG", "LGG"]:
cur = join(downloaded_data_dir, tpe)
for p in subdirs(cur, join=False):
patdir = join(cur, p)
patient_name = tpe + "__" + p
patient_names.append(patient_name)
t1 = join(patdir, p + "_t1.nii.gz")
t1c = join(patdir, p + "_t1ce.nii.gz")
t2 = join(patdir, p + "_t2.nii.gz")
flair = join(patdir, p + "_flair.nii.gz")
seg = join(patdir, p + "_seg.nii.gz")
assert all([
isfile(t1),
isfile(t1c),
isfile(t2),
isfile(flair),
isfile(seg)
]), "%s" % patient_name
shutil.copy(t1, join(target_imagesTr, patient_name + "_0000.nii.gz"))
shutil.copy(t1c, join(target_imagesTr, patient_name + "_0001.nii.gz"))
shutil.copy(t2, join(target_imagesTr, patient_name + "_0002.nii.gz"))
shutil.copy(flair, join(target_imagesTr, patient_name + "_0003.nii.gz"))
copy_BraTS_segmentation_and_convert_labels(seg, join(target_labelsTr, patient_name + ".nii.gz"))
json_dict = OrderedDict()
json_dict['name'] = "BraTS2019"
json_dict['description'] = "nothing"
json_dict['tensorImageSize'] = "4D"
json_dict['reference'] = "see BraTS2019"
json_dict['licence'] = "see BraTS2019 license"
json_dict['release'] = "0.0"
json_dict['modality'] = {
"0": "T1",
"1": "T1ce",
"2": "T2",
"3": "FLAIR"
}
json_dict['labels'] = {
"0": "background",
"1": "edema",
"2": "non-enhancing",
"3": "enhancing",
}
json_dict['numTraining'] = len(patient_names)
json_dict['numTest'] = 0
json_dict['training'] = [{'image': "./imagesTr/%s.nii.gz" % i, "label": "./labelsTr/%s.nii.gz" % i} for i in
patient_names]
json_dict['test'] = []
save_json(json_dict, join(target_base, "dataset.json"))
if __name__ == "__main__":
main()