-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathdemo_registration.py
270 lines (222 loc) · 11 KB
/
demo_registration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import open3d
import tensorflow as tf
import numpy as np
import os
import copy
import time
from utils.config import Config
from datasets.common import Dataset
from models.KPFCNN_model import KernelPointFCNN
import matplotlib.pyplot as plt
import matplotlib.cm as cm
open3d.set_verbosity_level(open3d.VerbosityLevel.Error)
class MiniDataset(Dataset):
def __init__(self, files, voxel_size=0.03):
Dataset.__init__(self, 'Mini')
self.num_test = 0
self.anc_points = {"train": [], "test": []}
self.ids_list = {"train": [], "test": []}
for filename in files:
pcd = open3d.read_point_cloud(filename)
pcd = open3d.voxel_down_sample(pcd, voxel_size=voxel_size)
points = np.array(pcd.points)
self.anc_points['test'] += [points]
self.ids_list['test'] += [filename]
self.num_test += 1
def get_batch_gen(self, split, config):
def random_balanced_gen():
# Initiate concatenation lists
anc_points_list = []
pos_points_list = []
anc_keypts_list = []
pos_keypts_list = []
backup_anc_points_list = []
backup_pos_points_list = []
ti_list = []
ti_list_pos = []
batch_n = 0
gen_indices = np.arange(self.num_test)
for p_i in gen_indices:
anc_id = self.ids_list['test'][p_i]
pos_id = self.ids_list['test'][p_i]
anc_ind = self.ids_list['test'].index(anc_id)
pos_ind = self.ids_list['test'].index(pos_id)
anc_points = self.anc_points['test'][anc_ind].astype(np.float32)
pos_points = self.anc_points['test'][pos_ind].astype(np.float32)
# back up point cloud
backup_anc_points = anc_points
backup_pos_points = pos_points
n = anc_points.shape[0] + pos_points.shape[0]
anc_keypts = np.array([])
pos_keypts = np.array([])
# Add data to current batch
anc_points_list += [anc_points]
anc_keypts_list += [anc_keypts]
pos_points_list += [pos_points]
pos_keypts_list += [pos_keypts]
backup_anc_points_list += [backup_anc_points]
backup_pos_points_list += [backup_pos_points]
ti_list += [p_i]
ti_list_pos += [p_i]
yield (np.concatenate(anc_points_list + pos_points_list, axis=0), # anc_points
np.concatenate(anc_keypts_list, axis=0), # anc_keypts
np.concatenate(pos_keypts_list, axis=0),
np.array(ti_list + ti_list_pos, dtype=np.int32), # anc_obj_index
np.array([tp.shape[0] for tp in anc_points_list] + [tp.shape[0] for tp in pos_points_list]), # anc_stack_length
np.array([anc_id, pos_id]),
np.concatenate(backup_anc_points_list + backup_pos_points_list, axis=0)
)
anc_points_list = []
pos_points_list = []
anc_keypts_list = []
pos_keypts_list = []
backup_anc_points_list = []
backup_pos_points_list = []
ti_list = []
ti_list_pos = []
##################
# Return generator
##################
# Generator types and shapes
gen_types = (tf.float32, tf.int32, tf.int32, tf.int32, tf.int32, tf.string, tf.float32)
gen_shapes = ([None, 3], [None], [None], [None], [None], [None], [None, 3])
return random_balanced_gen, gen_types, gen_shapes
def get_tf_mapping(self, config):
def tf_map(anc_points, anc_keypts, pos_keypts, obj_inds, stack_lengths, ply_id, backup_points):
batch_inds = self.tf_get_batch_inds(stack_lengths)
stacked_features = tf.ones((tf.shape(anc_points)[0], 1), dtype=tf.float32)
anchor_input_list = self.tf_descriptor_input(config,
anc_points,
stacked_features,
stack_lengths,
batch_inds)
return anchor_input_list + [stack_lengths, anc_keypts, pos_keypts, ply_id, backup_points]
return tf_map
class RegTester:
def __init__(self, model, restore_snap=None):
# Tensorflow Saver definition
my_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='KernelPointNetwork')
self.saver = tf.train.Saver(my_vars, max_to_keep=100)
# Create a session for running Ops on the Graph.
on_CPU = True
if on_CPU:
cProto = tf.ConfigProto(device_count={'GPU': 0})
else:
cProto = tf.ConfigProto(log_device_placement=False, allow_soft_placement=True)
cProto.gpu_options.allow_growth = True
self.sess = tf.Session(config=cProto)
# Init variables
self.sess.run(tf.global_variables_initializer())
# Name of the snapshot to restore to (None if you want to start from beginning)
# restore_snap = join(self.saving_path, 'snapshots/snap-40000')
if (restore_snap is not None):
self.saver.restore(self.sess, restore_snap)
print("Model restored from " + restore_snap)
self.experiment_str = restore_snap.split("_")[-1][:8] + "-" + restore_snap.split("-")[-1]
## The release weight is pretrained on 3DMatch dataset, where we use a voxel downsample with 0.03m.
## If you want to test your own point cloud data which have different scale, you should change the scale
## of the kernel points so that the receptive field is also enlarged. For example, when testing the
## generalization on ETH, we use the following code to rescale the kernel points.
# for v in my_vars:
# if 'kernel_points' in v.name:
# rescale_op = v.assign(tf.multiply(v, 0.10 / 0.03))
# self.sess.run(rescale_op)
def generate_descriptor(self, model, dataset):
self.sess.run(dataset.test_init_op)
t = []
for i in range(dataset.num_test):
stime = time.time()
ops = [model.anchor_inputs, model.out_features, model.out_scores, model.anc_id]
[inputs, features, scores, anc_id] = self.sess.run(ops, {model.dropout_prob: 1.0})
t += [time.time() - stime]
# selecet keypoint based on scores
scores_first_pcd = scores[inputs['in_batches'][0][:-1]]
selected_keypoints_id = np.argsort(scores_first_pcd, axis=0)[:].squeeze()
keypts_score = scores[selected_keypoints_id]
keypts_loc = inputs['backup_points'][selected_keypoints_id]
anc_features = features[selected_keypoints_id]
np.savez_compressed(
anc_id.decode("utf-8").replace('.ply', ''),
keypts=keypts_loc,
features=anc_features,
scores=keypts_score,
)
def draw_registration_result(source, target, transformation):
source_temp = copy.deepcopy(source)
target_temp = copy.deepcopy(target)
open3d.estimate_normals(source_temp)
open3d.estimate_normals(target_temp)
source_temp.paint_uniform_color([1, 0.706, 0])
target_temp.paint_uniform_color([0, 0.651, 0.929])
source_temp.transform(transformation)
open3d.draw_geometries([source_temp, target_temp])
def execute_global_registration(src_keypts, tgt_keypts, src_desc, tgt_desc, distance_threshold):
result = open3d.registration_ransac_based_on_feature_matching(
src_keypts, tgt_keypts, src_desc, tgt_desc,
distance_threshold,
open3d.TransformationEstimationPointToPoint(False), 4,
[open3d.CorrespondenceCheckerBasedOnEdgeLength(0.9),
open3d.CorrespondenceCheckerBasedOnDistance(distance_threshold)],
open3d.RANSACConvergenceCriteria(4000000, 500))
return result
if __name__ == '__main__':
point_cloud_files = ["demo_data/cloud_bin_0.ply", "demo_data/cloud_bin_1.ply"]
path = 'results/Log_contraloss/'
config = Config()
config.load(path)
# Initiate dataset configuration
dataset = MiniDataset(files=point_cloud_files, voxel_size=0.03)
# Initialize input pipelines
dataset.init_test_input_pipeline(config)
model = KernelPointFCNN(dataset.flat_inputs, config)
# Find all snapshot in the chosen training folder
snap_path = os.path.join(path, 'snapshots')
snap_steps = [int(f[:-5].split('-')[-1]) for f in os.listdir(snap_path) if f[-5:] == '.meta']
# Find which snapshot to restore
chosen_step = np.sort(snap_steps)[-1]
chosen_snap = os.path.join(path, 'snapshots', 'snap-{:d}'.format(chosen_step))
tester = RegTester(model, restore_snap=chosen_snap)
# calculate descriptors
tester.generate_descriptor(model, dataset)
# Load the descriptors and estimate the transformation parameters using RANSAC
src_pcd = open3d.read_point_cloud("demo_data/cloud_bin_0.ply")
src_data = np.load("demo_data/cloud_bin_0.npz")
src_features = open3d.registration.Feature()
src_features.data = src_data["features"].T
src_keypts = open3d.PointCloud()
src_keypts.points = open3d.Vector3dVector(src_data["keypts"])
src_scores = src_data["scores"]
tgt_pcd = open3d.read_point_cloud("demo_data/cloud_bin_1.ply")
tgt_data = np.load("demo_data/cloud_bin_1.npz")
tgt_features = open3d.registration.Feature()
tgt_features.data = tgt_data["features"].T
tgt_keypts = open3d.PointCloud()
tgt_keypts.points = open3d.Vector3dVector(tgt_data["keypts"])
tgt_scores = tgt_data["scores"]
result_ransac = execute_global_registration(src_keypts, tgt_keypts, src_features, tgt_features, 0.05)
# First plot the original state of the point clouds
draw_registration_result(src_pcd, tgt_pcd, np.identity(4))
# Plot point clouds after registration
draw_registration_result(src_pcd, tgt_pcd, result_ransac.transformation)
print(result_ransac)
# Visualize the detected keypts on src_pcd and tgt_pcd
box_list = []
top_k = np.argsort(tgt_scores, axis=0)[-50:]
for i in range(50):
mesh_box = open3d.geometry.create_mesh_sphere(radius=0.03)
mesh_box.translate(tgt_data["keypts"][top_k[i]].reshape([3, 1]))
mesh_box.paint_uniform_color([1, 0, 0])
box_list.append(mesh_box)
open3d.estimate_normals(tgt_pcd)
tgt_pcd.paint_uniform_color([0, 0.651, 0.929])
open3d.draw_geometries([tgt_pcd] + box_list)
box_list = []
top_k = np.argsort(src_scores, axis=0)[-50:]
for i in range(50):
mesh_box = open3d.geometry.create_mesh_sphere(radius=0.03)
mesh_box.translate(src_data["keypts"][top_k[i]].reshape([3, 1]))
mesh_box.paint_uniform_color([1, 0, 0])
box_list.append(mesh_box)
open3d.estimate_normals(src_pcd)
src_pcd.paint_uniform_color([1, 0.706, 0])
open3d.draw_geometries([src_pcd] + box_list)