-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine_finetune.py
204 lines (159 loc) · 7.79 KB
/
engine_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------
import math
import sys
from typing import Iterable, Optional
import torch.nn.functional as F
import torch
from timm.data import Mixup
from timm.utils import accuracy
from collections import defaultdict
import util.misc as misc
import util.lr_sched as lr_sched
def train_one_epoch(model: torch.nn.Module, criterion: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
mixup_fn: Optional[Mixup] = None, log_writer=None,
args=None):
model.train(True)
metric_logger = misc.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('acc1', misc.SmoothedValue(window_size=1, fmt='{value:.6f}')) # add acc1
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
accum_iter = args.accum_iter
optimizer.zero_grad()
if log_writer is not None:
print('log_dir: {}'.format(log_writer.log_dir))
# # 添加梯度相关的meters
# for i in range(24): # 假设有12个transformer blocks
# metric_logger.add_meter(f'grad_norm_block_{i}', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
# metric_logger.add_meter(f'grad_cos_sim_block_{i}', misc.SmoothedValue(window_size=1, fmt='{value:.6f}'))
# # 存储前一次的梯度
# previous_block_grads = {}
def compute_cosine_similarity(grad1, grad2):
"""计算两个梯度向量的余弦相似度"""
if grad1 is None or grad2 is None:
return 0.0
return float(F.cosine_similarity(grad1.view(1, -1), grad2.view(1, -1)).cpu())
header = 'Epoch: [{}]'.format(epoch)
print_freq = 20
def log_block_gradients(step):
grad_stats = {}
block_grads = {}
for name, param in model.named_parameters():
if param.grad is None:
continue
if 'gpt2.h.' in name:
try:
block_num = int(name.split('gpt2.h.')[1].split('.')[0])
if block_num not in block_grads:
block_grads[block_num] = []
grad_flat = param.grad.detach().flatten()
block_grads[block_num].append(grad_flat)
except Exception as e:
print(f"Error processing {name}: {e}")
# 计算并记录每个block的统计信息
for block_num, grads in block_grads.items():
try:
# 合并当前block的所有梯度
current_block_grads = torch.cat(grads)
# 计算梯度范数
grad_norm = float(torch.norm(current_block_grads, p=2).cpu())
# 计算与前一次梯度的余弦相似度
cos_sim = 0.0
if block_num in previous_block_grads:
cos_sim = compute_cosine_similarity(
current_block_grads,
previous_block_grads[block_num]
)
# 更新metric logger
metric_logger.update(**{
f'grad_norm_block_{block_num}': grad_norm,
f'grad_cos_sim_block_{block_num}': cos_sim
})
# 保存当前梯度用于下次比较
previous_block_grads[block_num] = current_block_grads.detach().clone()
except Exception as e:
print(f"Error computing stats for block {block_num}: {e}")
for data_iter_step, (samples, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
# we use a per iteration (instead of per epoch) lr scheduler
if data_iter_step % accum_iter == 0:
lr_sched.adjust_learning_rate(optimizer, data_iter_step / len(data_loader) + epoch, args)
samples = samples.to(device, non_blocking=True)
targets = targets.to(device, non_blocking=True)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with torch.cuda.amp.autocast():
outputs = model(samples)
loss = criterion(outputs, targets)
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
sys.exit(1)
acc1, _ = accuracy(outputs, targets, topk=(1, 5))
metric_logger.update(acc1=acc1.item())
loss /= accum_iter
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=False,
update_grad=(data_iter_step + 1) % accum_iter == 0)
if (data_iter_step + 1) % accum_iter == 0:
# log_block_gradients(data_iter_step)
optimizer.zero_grad()
torch.cuda.synchronize()
metric_logger.update(loss=loss_value)
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
loss_value_reduce = misc.all_reduce_mean(loss_value)
if log_writer is not None and (data_iter_step + 1) % accum_iter == 0:
""" We use epoch_1000x as the x-axis in tensorboard.
This calibrates different curves when batch size changes.
"""
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
log_writer.add_scalar('loss', loss_value_reduce, epoch_1000x)
log_writer.add_scalar('lr', max_lr, epoch_1000x)
# # 添加梯度信息到log_writer
# for name, meter in metric_logger.meters.items():
# if name.startswith('grad_'):
# log_writer.add_scalar(name, meter.global_avg, epoch_1000x)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate(data_loader, model, device):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = misc.MetricLogger(delimiter=" ")
header = 'Test:'
# switch to evaluation mode
model.eval()
for batch in metric_logger.log_every(data_loader, 10, header):
images = batch[0]
target = batch[-1]
images = images.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute output
with torch.cuda.amp.autocast():
output = model(images)
loss = criterion(output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
batch_size = images.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5, losses=metric_logger.loss))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}