forked from Arseha/peakonly
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpeakonly.py
425 lines (359 loc) · 18.7 KB
/
peakonly.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import os
import sys
import urllib.request
import zipfile
from functools import partial
import matplotlib.pyplot as plt
from PyQt5 import QtWidgets, QtGui, QtCore
from processing_utils.postprocess import ResultTable
from processing_utils.run_utils import find_mzML
from gui_utils.abstract_main_window import AbtractMainWindow
from gui_utils.auxilary_utils import ProgressBarsListItem
from gui_utils.mining import AnnotationParameterWindow, ReAnnotationParameterWindow
from gui_utils.visualization import EICParameterWindow, VisualizationWindow
from gui_utils.processing import ProcessingParameterWindow
from gui_utils.training import TrainingParameterWindow
from gui_utils.evaluation import EvaluationParameterWindow
from gui_utils.data_splitting import SplitterParameterWindow
from gui_utils.threading import Worker
class MainWindow(AbtractMainWindow):
# Initialization
def __init__(self):
super().__init__()
# create menu
self._create_menu()
# tune list of files
self._list_of_files.setSelectionMode(QtWidgets.QAbstractItemView.ExtendedSelection)
self._list_of_files.connectRightClick(partial(FileContextMenu, self))
# tune list of features
self._list_of_features.connectDoubleClick(self.plot_feature)
self._list_of_features.connectRightClick(partial(FeatureContextMenu, self))
self._init_ui()
# Set geometry and title
self.setGeometry(300, 300, 900, 600)
self.setWindowTitle('peakonly')
self.show()
def _create_menu(self):
menu = self.menuBar()
# file submenu
file = menu.addMenu('File')
file_import = QtWidgets.QMenu('Open', self)
file_import_mzML = QtWidgets.QAction('Open *.mzML', self)
file_import_mzML.triggered.connect(self._open_file)
file_import.addAction(file_import_mzML)
file_import_folder_mzML = QtWidgets.QAction('Open folder with *.mzML files', self)
file_import_folder_mzML.triggered.connect(self._open_folder)
file_import.addAction(file_import_folder_mzML)
file_export = QtWidgets.QMenu('Save', self)
file_export_features_csv = QtWidgets.QAction('Save a *.csv file with detected features', self)
file_export_features_csv.triggered.connect(partial(self._export_features, 'csv'))
file_export.addAction(file_export_features_csv)
file_export_features_png = QtWidgets.QAction('Save features as *.png files', self)
file_export_features_png.triggered.connect(partial(self._export_features, 'png'))
file_export.addAction(file_export_features_png)
file_clear = QtWidgets.QMenu('Clear', self)
file_clear_features = QtWidgets.QAction('Clear panel with detected features', self)
file_clear_features.triggered.connect(self._list_of_features.clear)
file_clear.addAction(file_clear_features)
file_exit = QtWidgets.QAction("Exit", self)
file_exit.triggered.connect(QtWidgets.QApplication.quit) # to do: create visualization
file.addMenu(file_import)
file.addMenu(file_export)
file.addMenu(file_clear)
file.addAction(file_exit)
# data submenu
data = menu.addMenu('Data')
data_processing = QtWidgets.QAction('Feature detection', self)
data_processing.triggered.connect(partial(self._data_processing, 'simple'))
data_download = QtWidgets.QMenu('Download', self)
data_download_models = QtWidgets.QAction('Download trained models', self)
data_download_models.triggered.connect(partial(self._download_button, mode='models'))
data_download.addAction(data_download_models)
data_download_annotated_data = QtWidgets.QAction('Download annotated data', self)
data_download_annotated_data.triggered.connect(partial(self._download_button, mode='data'))
data_download.addAction(data_download_annotated_data)
data_download_example = QtWidgets.QAction('Download *.mzML example', self)
data_download_example.triggered.connect(partial(self._download_button, mode='example'))
data_download.addAction(data_download_example)
data_visualization = QtWidgets.QAction('Visualization', self)
data_visualization.triggered.connect(self._open_visualization_window) # to do: create visualization
data.addAction(data_processing)
data.addMenu(data_download)
data.addAction(data_visualization)
# advanced submenu
advanced = menu.addMenu('Advanced')
advanced_data_processing = QtWidgets.QMenu('Advanced feature detection', self)
advanced_data_processing_all = QtWidgets.QAction('RecurrentCNN (testing)', self)
advanced_data_processing_all.triggered.connect(partial(self._data_processing, 'all in one'))
advanced_data_processing.addAction(advanced_data_processing_all)
advanced_data_processing_sequential = QtWidgets.QAction('Two subsequent CNNs', self)
advanced_data_processing_sequential.triggered.connect(partial(self._data_processing, 'sequential'))
advanced_data_processing.addAction(advanced_data_processing_sequential)
advanced_data_mining = QtWidgets.QMenu('Data mining', self)
advanced_data_mining_manual = QtWidgets.QAction('Manual annotation', self)
advanced_data_mining_manual.triggered.connect(partial(self._data_mining, mode='manual'))
advanced_data_mining.addAction(advanced_data_mining_manual)
advanced_data_mining_reannotation = QtWidgets.QAction('Reannotation', self)
advanced_data_mining_reannotation.triggered.connect(partial(self._data_mining, mode='reannotation'))
advanced_data_mining.addAction(advanced_data_mining_reannotation)
advanced_data_mining_split = QtWidgets.QAction('Split data', self)
advanced_data_mining_split.triggered.connect(self._split_data)
advanced_model = QtWidgets.QMenu('Model', self)
advanced_model_training = QtWidgets.QMenu('Training', self) # training
advanced_model_training_all = QtWidgets.QAction('RecurrentCNN (testing)', self)
advanced_model_training_all.triggered.connect(partial(self._model_training, 'all in one'))
advanced_model_training.addAction(advanced_model_training_all)
advanced_model_training_sequential = QtWidgets.QAction('Two subsequent CNNs', self)
advanced_model_training_sequential.triggered.connect(partial(self._model_training, 'sequential'))
advanced_model_training.addAction(advanced_model_training_sequential)
advanced_model_fine_tuning = QtWidgets.QMenu('Fine-tuning (in developing)', self) # fine-tuning
advanced_model_fine_tuning_all = QtWidgets.QAction('RecurrentCNN (testing)', self)
advanced_model_fine_tuning_all.triggered.connect(partial(self._model_fine_tuning, 'all in one'))
advanced_model_fine_tuning.addAction(advanced_model_fine_tuning_all)
advanced_model_fine_tuning_sequential = QtWidgets.QAction('Two subsequent CNNs', self)
advanced_model_fine_tuning_sequential.triggered.connect(partial(self._model_fine_tuning, 'sequential'))
advanced_model_fine_tuning.addAction(advanced_model_fine_tuning_sequential)
advanced_model_evaluation = QtWidgets.QMenu('Evaluation', self) # evaluation
advanced_model_evaluation_all = QtWidgets.QAction('RecurrentCNN (testing)', self)
advanced_model_evaluation_all.triggered.connect(partial(self._model_evaluation, 'all in one'))
advanced_model_evaluation.addAction(advanced_model_evaluation_all)
advanced_model_evaluation_sequential = QtWidgets.QAction('Two subsequent CNNs', self)
advanced_model_evaluation_sequential.triggered.connect(partial(self._model_evaluation, 'sequential'))
advanced_model_evaluation.addAction(advanced_model_evaluation_sequential)
advanced_model.addMenu(advanced_model_training) # add to menu
advanced_model.addMenu(advanced_model_fine_tuning)
advanced_model.addMenu(advanced_model_evaluation)
advanced.addMenu(advanced_data_processing)
advanced.addMenu(advanced_data_mining)
advanced.addMenu(advanced_model)
def _init_ui(self):
# Layouts
files_layout = QtWidgets.QVBoxLayout()
files_label = QtWidgets.QLabel(self)
files_label.setText('Opened files:')
files_layout.addWidget(files_label)
files_layout.addWidget(self._list_of_files)
features_layout = QtWidgets.QVBoxLayout()
features_label = QtWidgets.QLabel(self)
features_label.setText('Detected features:')
features_layout.addWidget(features_label)
features_layout.addWidget(self._list_of_features)
canvas_layout = QtWidgets.QVBoxLayout()
canvas_layout.addWidget(self._toolbar)
canvas_layout.addWidget(self._canvas)
canvas_files_features_layout = QtWidgets.QHBoxLayout()
canvas_files_features_layout.addLayout(files_layout, 15)
canvas_files_features_layout.addLayout(canvas_layout, 70)
canvas_files_features_layout.addLayout(features_layout, 15)
scrollable_pb_list = QtWidgets.QScrollArea()
scrollable_pb_list.setWidget(self._pb_list)
scrollable_pb_list.setWidgetResizable(True)
main_layout = QtWidgets.QVBoxLayout()
main_layout.addLayout(canvas_files_features_layout, 90)
main_layout.addWidget(scrollable_pb_list, 10)
widget = QtWidgets.QWidget()
widget.setLayout(main_layout)
self.setCentralWidget(widget)
# Auxiliary methods
def _open_file(self):
files_names = QtWidgets.QFileDialog.getOpenFileNames(None, '', '', 'mzML (*.mzML)')[0]
for name in files_names:
self._list_of_files.addFile(name)
def _open_folder(self):
path = str(QtWidgets.QFileDialog.getExistingDirectory())
for name in sorted(find_mzML(path)):
self._list_of_files.addFile(name)
def _export_features(self, mode):
if self._list_of_features.count() > 0:
if mode == 'csv':
# to do: features should be QTreeWidget (root should keep basic information: files and parameters)
files = self._feature_parameters['files']
table = ResultTable(files, self._list_of_features.features)
table.fill_zeros(self._feature_parameters['delta mz'])
file_name, _ = QtWidgets.QFileDialog.getSaveFileName(self, 'Export features', '',
'csv (*.csv)')
if file_name:
table.to_csv(file_name)
elif mode == 'png':
directory = str(QtWidgets.QFileDialog.getExistingDirectory(self, 'Choose a directory where to save'))
worker = Worker(self._save_features_png, features=self._list_of_features.features, directory=directory)
self.run_thread('Saving features as *.png files:', worker)
else:
assert False, mode
else:
msg = QtWidgets.QMessageBox(self)
msg.setText('You should firstly detect features in *mzML files:\n'
'Data -> Feature detection')
msg.setIcon(QtWidgets.QMessageBox.Warning)
msg.exec_()
def _get_eic_parameters(self):
subwindow = EICParameterWindow(self)
subwindow.show()
@staticmethod
def _show_downloading_progress(number_of_block, size_of_block, total_size, pb):
pb.setValue(int(number_of_block * size_of_block * 100 / total_size))
# Buttons, which creates threads
def _download_button(self, mode):
if mode == 'models':
text = 'Downloading trained models:'
elif mode == 'data':
text = 'Downloading annotated data:'
elif mode == 'example':
text = 'Downloading *.mzML example:'
else:
assert False, mode
pb = ProgressBarsListItem(text, parent=self._pb_list)
self._pb_list.addItem(pb)
worker = Worker(self._download, download=True, mode=mode)
worker.signals.download_progress.connect(partial(self._show_downloading_progress, pb=pb))
worker.signals.finished.connect(partial(self._threads_finisher,
text='Download is successful',
icon=QtWidgets.QMessageBox.Information,
pb=pb))
self._thread_pool.start(worker)
# Main functionality
@staticmethod
def _download(mode, progress_callback):
"""
Download necessary data
Parameters
----------
mode : str
one of three ('models', 'data', 'example')
progress_callback : QtCore.pyqtSignal
indicating progress in %
"""
if mode == 'models':
folder = 'data/weights'
if not os.path.exists(folder):
os.mkdir(folder)
# Classifier
url = 'https://getfile.dokpub.com/yandex/get/https://yadi.sk/d/rAhl2u7WeIUGYA'
file = os.path.join(folder, 'Classifier.pt')
urllib.request.urlretrieve(url, file, progress_callback.emit)
# Segmentator
url = 'https://getfile.dokpub.com/yandex/get/https://yadi.sk/d/9m5e3C0q0HKbuw'
file = os.path.join(folder, 'Segmentator.pt')
urllib.request.urlretrieve(url, file, progress_callback.emit)
# RecurrentCNN
url = 'https://getfile.dokpub.com/yandex/get/https://yadi.sk/d/1IrXRWDWhANqKw'
file = os.path.join(folder, 'RecurrentCNN.pt')
urllib.request.urlretrieve(url, file, progress_callback.emit)
elif mode == 'data':
folder = 'data/annotation'
if not os.path.exists(folder):
os.mkdir(folder)
url = 'https://getfile.dokpub.com/yandex/get/https://yadi.sk/d/f6BiwqWYF4UVnA'
file = 'data/annotation/annotation.zip'
urllib.request.urlretrieve(url, file, progress_callback.emit)
with zipfile.ZipFile(file) as zip_file:
zip_file.extractall(folder)
os.remove(file)
elif mode == 'example':
url = 'https://getfile.dokpub.com/yandex/get/https://yadi.sk/d/BhQNge3db7M2Lw'
file = 'data/mix.mzML'
urllib.request.urlretrieve(url, file, progress_callback.emit)
else:
assert False, mode
@staticmethod
def _save_features_png(features, directory, progress_callback):
fig = plt.figure()
for i, feature in enumerate(features):
ax = fig.add_subplot(111)
feature.plot(ax, shifted=True)
fig.savefig(os.path.join(directory, f'{i}.png'))
fig.clear()
progress_callback.emit(int(i * 100 / len(features)))
plt.close(fig)
def _split_data(self):
subwindow = SplitterParameterWindow(self)
subwindow.show()
def _data_mining(self, mode='manual'):
if mode != 'reannotation':
files = [self._list_of_files.file2path[self._list_of_files.item(i).text()]
for i in range(self._list_of_files.count())]
subwindow = AnnotationParameterWindow(files, mode, self)
subwindow.show()
else:
subwindow = ReAnnotationParameterWindow(self)
subwindow.show()
def _data_processing(self, mode):
if mode == 'simple' and (not os.path.isfile(os.path.join('data', 'weights', 'Classifier.pt'))
or not os.path.isfile(os.path.join('data', 'weights', 'Segmentator.pt'))):
msg = QtWidgets.QMessageBox(self)
msg.setText('You should download models in order to process your data:\n'
'Data -> Download -> Download trained models')
msg.setIcon(QtWidgets.QMessageBox.Warning)
msg.exec_()
else:
files = [self._list_of_files.file2path[self._list_of_files.item(i).text()]
for i in range(self._list_of_files.count())]
if not files:
msg = QtWidgets.QMessageBox(self)
msg.setText('You should firstly open *.mzML files:\n'
'File -> Open -> Open *.mzML')
msg.setIcon(QtWidgets.QMessageBox.Warning)
msg.exec_()
else:
subwindow = ProcessingParameterWindow(files, mode, self)
subwindow.show()
def _open_visualization_window(self):
files = [self._list_of_files.file2path[self._list_of_files.item(i).text()]
for i in range(self._list_of_files.count())]
subwindow = VisualizationWindow(files, self)
subwindow.show()
# Model functionality
def _model_training(self, mode):
subwindow = TrainingParameterWindow(mode, self)
subwindow.show()
def _model_fine_tuning(self, mode):
pass
def _model_evaluation(self, mode):
subwindow = EvaluationParameterWindow(mode, self)
subwindow.show()
class FileContextMenu(QtWidgets.QMenu):
def __init__(self, parent: MainWindow):
self.parent = parent
super().__init__(parent)
menu = QtWidgets.QMenu(parent)
tic = QtWidgets.QAction('Plot TIC', parent)
eic = QtWidgets.QAction('Plot EIC', parent)
close = QtWidgets.QAction('Close', parent)
menu.addAction(tic)
menu.addAction(eic)
menu.addAction(close)
action = menu.exec_(QtGui.QCursor.pos())
if action == tic:
for file in self.parent.get_selected_files():
file = file.text()
self.parent.plot_tic(file)
elif action == eic:
subwindow = EICParameterWindow(self.parent)
subwindow.show()
elif action == close:
self.close_files()
def close_files(self):
for item in self.parent.get_selected_files():
self.parent.close_file(item)
class FeatureContextMenu(QtWidgets.QMenu):
def __init__(self, parent: MainWindow):
self.parent = parent
super().__init__(parent)
feature = None
for item in self.parent.get_selected_features():
feature = item
menu = QtWidgets.QMenu(parent)
with_rt_correction = QtWidgets.QAction('Plot with rt correction', parent)
without_rt_correction = QtWidgets.QAction('Plot without rt correction', parent)
menu.addAction(with_rt_correction)
menu.addAction(without_rt_correction)
action = menu.exec_(QtGui.QCursor.pos())
if action == with_rt_correction:
self.parent.plot_feature(feature, shifted=True)
elif action == without_rt_correction:
self.parent.plot_feature(feature, shifted=False)
if __name__ == '__main__':
plt.switch_backend('Agg') # to do: check if it is alright???
app = QtWidgets.QApplication(sys.argv)
window = MainWindow()
sys.exit(app.exec_())