-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathobj_adapter.py
123 lines (109 loc) · 6.22 KB
/
obj_adapter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from adapter_dataset import ObjectFeatureDataset
import torch
from torch.utils.data import DataLoader, ConcatDataset
import os
import json
import hydra
from omegaconf import DictConfig, OmegaConf
from adapter import ModifiedClipAdapter, WeightAdapter, InfoNCELoss
from hydra.core.hydra_config import HydraConfig
@hydra.main(config_path="configs", config_name="config")
def main(cfg : DictConfig):
original_cwd = HydraConfig.get().runtime.cwd
print(original_cwd)
combine_dataset = True
adapter_type = cfg.params.adapter_type
dataset_name = f'bop_obj_shuffle_0529_{adapter_type}'
# dataset_name = f'lmo_{adapter_type}'
temperature = cfg.params.temperature
batch_size = cfg.params.batch_size
shuffle = cfg.params.shuffle
### bop challenge datasets
print(os.getcwd())
lmo_bop23_feature_dataset = ObjectFeatureDataset(data_json=f'{original_cwd}/datasets/bop23_challenge/datasets/templates_pyrender/lmo/descriptors_pbr.pth',
num_object=8)
tless_bop23_feature_dataset = ObjectFeatureDataset(data_json=f'{original_cwd}/datasets/bop23_challenge/datasets/templates_pyrender/tless/descriptors_pbr.pth',
num_object=30, label_offset=8)
tudl_bop23_feature_dataset = ObjectFeatureDataset(data_json=f'{original_cwd}/datasets/bop23_challenge/datasets/templates_pyrender/tudl/descriptors_pbr.pth',
num_object=3, label_offset=38)
icbin_bop23_feature_dataset = ObjectFeatureDataset(data_json=f'{original_cwd}/datasets/bop23_challenge/datasets/templates_pyrender/icbin/descriptors_pbr.pth',
num_object=2, label_offset=41)
itodd_bop23_feature_dataset = ObjectFeatureDataset(data_json=f'{original_cwd}/datasets/bop23_challenge/datasets/templates_pyrender/itodd/descriptors_pbr.pth',
num_object=28, label_offset=43)
hb_bop23_feature_dataset = ObjectFeatureDataset(data_json=f'{original_cwd}/datasets/bop23_challenge/datasets/templates_pyrender/hb/descriptors_pbr.pth',
num_object=33, label_offset=71)
ycbv_bo23_feature_dataset = ObjectFeatureDataset(data_json=f'{original_cwd}/datasets/bop23_challenge/datasets/templates_pyrender/ycbv/descriptors_pbr.pth',
num_object=21, label_offset=104)
cur_feature_dataset = hb_bop23_feature_dataset
# Example training loop
input_features = cfg.params.input_features # Size of the input feature vector
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if adapter_type == 'clip':
learning_rate = 1e-4
model = ModifiedClipAdapter(input_features).to(device)
else:
learning_rate = 1e-3
model = WeightAdapter(input_features).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-4) #
criterion = InfoNCELoss(temperature=temperature).to(device)
epochs = cfg.params.epochs
if combine_dataset:
combined_dataset = ConcatDataset(
[lmo_bop23_feature_dataset, tless_bop23_feature_dataset, tudl_bop23_feature_dataset,
icbin_bop23_feature_dataset, itodd_bop23_feature_dataset, hb_bop23_feature_dataset,
ycbv_bo23_feature_dataset])
dataloader = DataLoader(combined_dataset, batch_size=batch_size, shuffle=shuffle)
else:
dataloader = DataLoader(cur_feature_dataset, batch_size=batch_size, shuffle=shuffle)
for epoch in range(epochs):
for inputs, labels in dataloader: # in dataloader: tqdm(dataloader)
inputs = inputs.view(-1, input_features).to(device)
labels = labels.view(-1).to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
print(f'Epoch {epoch + 1}, Loss: {loss.item()}')
save_model = True
adapter_args = f'{dataset_name}_temp_{temperature}_epoch_{epochs}_lr_{learning_rate}_bs_{batch_size}'
if save_model:
# Assuming your model is named 'model'
model_output_dir = f'{original_cwd}/adapter_weights/bop23'
os.makedirs(model_output_dir, exist_ok=True)
model_path = f'{model_output_dir}/{adapter_args}_weights.pth' # Define the path where you want to save the model
torch.save(model.state_dict(), model_path)
print(f'Model weights saved to {model_path}')
save_features = False
if save_features:
# Assuming model is already defined and loaded with trained weights
model.eval() # Set the model to evaluation mode
batch_size = 64
# Assuming 'feature_dataset' is your Dataset object containing the feature vectors
# Assuming 'test_dataloader' is your DataLoader for the test dataset
test_dataloader = DataLoader(cur_feature_dataset, batch_size=batch_size, shuffle=False)
adatped_features = []
for inputs, labels in test_dataloader:
inputs = inputs.view(-1, input_features).to(device)
# labels = labels.to(device)
with torch.no_grad():
outputs = model(inputs)
# Perform inference using the model
# Your inference code here
adatped_features.append(outputs)
adatped_features = torch.cat(adatped_features, dim=0)
print(adatped_features.size())
feat_dict = dict()
feat_dict['features'] = adatped_features.detach().cpu().tolist()
# feat_dict['ffm_features'] = ffm_features.detach().cpu().tolist()
# output_dir = f'./bop23_obj_features/{dataset_folder}'
output_dir = f'{original_cwd}/adapted_obj_feats'
if not os.path.exists(output_dir):
os.makedirs(output_dir)
json_filename = f'{adapter_args}.json'
# json_filename = f'{adapter_type}_bs1024_epoch_{epochs}_adapter_descriptors_pbr.json'
with open(os.path.join(output_dir, json_filename), 'w') as f:
json.dump(feat_dict, f)
print(f"saving adapted features {os.path.join(output_dir, json_filename)}")
if __name__ == '__main__':
main()