-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patharm-ssa.py
executable file
·168 lines (160 loc) · 5.27 KB
/
arm-ssa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#!/usr/bin/env python3
# Extract outliers using SSA method
# Author: Yuping Lu <[email protected]>
# Date : Mar 25 2018
#load lib
import sys
import csv
import numpy as np
import datetime
import pylab as plt
def SSA(Y,L,period_groups):
T = Y.size
assert L <= T/2
K = T - L + 1
# Form the trajectory matrix and find the eigen decomp
X = np.zeros((L,K))
for i in range(K): X[:,i] = Y[i:(i+L)]
lamda,P = np.linalg.eig(np.dot(X,X.T))
# Find the dominant frequency of each eigenvector
f = np.zeros(lamda.size)
fs = np.fft.fftfreq(f.size,1.)
ix = np.argsort(fs)
fs = fs[ix]
eps = 0.99*(fs[1]-fs[0])
for i in range(f.size):
ps = np.abs(np.fft.fft(P[:,i]))**2
ps = ps[ix]
f[i] = fs[ps.argmax()]
f = np.abs(f)
# convert periodicity into frequency
fgroups = 1/np.asarray(period_groups,dtype=float)
fgroups = np.hstack([0,fgroups])
# Build an approximation of X by taking a subset of the
# decomposition. This approximation is formed by taking
# eigenvectors whose dominant frequency is close to the targetted
# values.
Xt = np.zeros((fgroups.size,)+X.shape)
for i in range(f.size):
g = np.where(np.abs(fgroups-f[i]) < eps)[0]
if g.size == 0: continue
Xt[g[0]] += np.dot(np.outer(P[:,i],P[:,i]),X)
# Now we reconstruct the signal by taking a mean of all the
# approximations.
Yt = np.zeros((fgroups.size,Y.size))
c = np.zeros((fgroups.size,Y.size))
for g in range(fgroups.size):
for i in range(K):
Yt[g,i:(i+L)] += Xt[g,:,i]
c [g,i:(i+L)] += 1
Yt /= c
return Yt
# Get the whole dates
def getDates(byear, eyear):
x = []
start = datetime.date(byear-1, 12, 31)
end = datetime.date(eyear, 12, 31)
span = (end - start).days
begin = datetime.datetime(byear, 1, 1, 0, 0)
for i in range(span):
x.append(begin + datetime.timedelta(i))
return x
# Read a variable from a csv file, check missing values
# And replace missing values with average value
# Return a dict {date:variable}
def readCSVFile(path, name, begin, end):
res = {}
begin_date = datetime.datetime(begin, 1, 1, 0, 0, 0)
end_date = datetime.datetime(end, 1, 1, 0, 0, 0)
# read all data
with open( path, 'r' ) as f:
reader = csv.DictReader(f)
for line in reader:
key = datetime.datetime.strptime(line['date'], '%Y-%m-%d %H:%M:%S')
if line[name] != 'None' and key >= begin_date and key < end_date:
res[key] = float(line[name])
# compute average values
cnt = [0] * 366
average = [0] * 366
for i in range(begin, end):
dates = getDates(i, i)
count = -1
for date in dates:
count += 1
if date in res:
cnt[count] += 1
average[count] += res[date]
for i in range(len(cnt)):
if cnt[i] != 0:
average[i] /= cnt[i]
else:
average[i] = -40
# replace missing values with average ones
for i in range(begin, end):
dates = getDates(i, i)
count = -1
for date in dates:
count += 1
if date not in res:
res[date] = average[count]
return res
if __name__ == "__main__":
# read data from csv file
#path = '/Users/ylk/github/arm-pearson/netcdf_year_viz/E33_1993_2017.csv'
path = '/Users/yupinglu/github/arm-pearson/netcdf_year_viz/E38_1993_2017.csv'
begin = 2012
end = 2018
var_name = 'temp_mean'
var_dict = readCSVFile(path, var_name, begin, end)
# compute SSA and extract residuals
res = []
t = []
for key in sorted(var_dict):
t.append(key)
res.append(var_dict[key])
gpp = np.asarray(res, dtype=np.float32)
groups = [365, 30]
decomp = SSA(gpp,400,groups)
# output the extream values
residuals = gpp-decomp.sum(axis=0)
# print the hist of the residuals
'''
n, bins, patches = plt.hist(residuals)
plt.show()
'''
# print the top 10 extreme values
'''
x = np.absolute(residuals)
ix = np.argsort(x)
for i in range(len(ix)-1, len(ix)-11, -1):
print(t[ix[i]].date(), residuals[ix[i]])
'''
# get 95% confidence interval, but the sample size is large. use 68–95–99.7 rule instead
mu = np.mean(residuals)
sigma = np.std(residuals)
#SE = sigma / np.sqrt(len(residuals))
ci0 = mu - 3 * sigma
ci1 = mu + 3 * sigma
#print the outcomes
#print('99.7% confidence inverval:', ci0, ci1, residuals.min(), residuals.max())
#print the outliers
for i in range(len(residuals)):
if residuals[i] < ci0 or residuals[i] > ci1:
print(t[i].date(), residuals[i])
# plot the result
fig,axs = plt.subplots(nrows=len(groups)+2,tight_layout=True)
axs[0].plot(t,gpp,'-')
axs[0].set_ylim(gpp.min(),gpp.max())
for g in range(len(groups)+1):
axs[g].plot(t,decomp[g],'-')
axs[-1].plot(t,gpp-decomp.sum(axis=0),'-')
Y1 = [ci0] * len(t)
Y2 = [ci1] * len(t)
#axs[-1].plot(t,Y1,lw=1)
#axs[-1].plot(t,Y2,lw=1)
axs[-1].fill_between(t, Y1, Y2, alpha=0.5)
axs[0].set_ylabel("Raw & Trend")
axs[1].set_ylabel("Year")
axs[2].set_ylabel("Month")
axs[3].set_ylabel("Residual")
plt.show()