-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtest_m24.py
117 lines (96 loc) · 3.28 KB
/
test_m24.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Tests for the 'AIM legacy segmentation' metric (m24).
"""
# ----------------------------------------------------------------------------
# Imports
# ----------------------------------------------------------------------------
# Standard library modules
import pathlib
from typing import Any, List, Optional, Union
# Third-party modules
import pytest
# First-party modules
from aim.common import image_utils
from aim.common.constants import GUI_TYPE_DESKTOP, GUI_TYPE_MOBILE
from aim.metrics.m24.m24_aim_legacy_segmentation import Metric
from tests.common.constants import DATA_TESTS_INPUT_VALUES_DIR, IDIFF_TOLERANCE
from tests.common.utils import load_expected_result
# ----------------------------------------------------------------------------
# Metadata
# ----------------------------------------------------------------------------
__author__ = "Amir Hossein Kargaran, Markku Laine"
__date__ = "2022-08-05"
__email__ = "[email protected]"
__version__ = "1.0"
# ----------------------------------------------------------------------------
# Tests
# ----------------------------------------------------------------------------
@pytest.mark.parametrize(
["input_value", "expected_results"],
[
(
"interfacemetrics_aalto.png",
[load_expected_result("m24_0_interfacemetrics_aalto.png")],
),
],
)
def test_aim_legacy_segmentation_desktop(
input_value: str, expected_results: List[Any]
) -> None:
"""
Test AIM legacy segmentation (desktop GUIs).
Args:
input_value: GUI image file name
expected_results: Expected results (list of measures)
"""
# Build GUI image file path
gui_image_filepath: pathlib.Path = (
pathlib.Path(DATA_TESTS_INPUT_VALUES_DIR) / input_value
)
# Read GUI image (PNG)
gui_image_png_base64: str = image_utils.read_image(gui_image_filepath)
# Execute metric
result: Optional[List[Union[int, float, str]]] = Metric.execute_metric(
gui_image_png_base64,
gui_type=GUI_TYPE_DESKTOP,
)
# Test result
if result is not None and isinstance(result[0], str):
assert (
image_utils.idiff(result[0], expected_results[0])
<= IDIFF_TOLERANCE
)
@pytest.mark.parametrize(
["input_value", "expected_results"],
[
("uied_mobile.png", [load_expected_result("m24_0_uied_mobile.png")]),
],
)
def test_aim_legacy_segmentation_mobile(
input_value: str, expected_results: List[Any]
) -> None:
"""
Test AIM legacy segmentation (mobile GUIs).
Args:
input_value: GUI image file name
expected_results: Expected results (list of measures)
"""
# Build GUI image file path
gui_image_filepath: pathlib.Path = (
pathlib.Path(DATA_TESTS_INPUT_VALUES_DIR) / input_value
)
# Read GUI image (PNG)
gui_image_png_base64: str = image_utils.read_image(gui_image_filepath)
# Execute metric
result: Optional[List[Union[int, float, str]]] = Metric.execute_metric(
gui_image_png_base64,
gui_type=GUI_TYPE_MOBILE,
)
# Test result
if result is not None and isinstance(result[0], str):
assert (
image_utils.idiff(result[0], expected_results[0])
<= IDIFF_TOLERANCE
)