-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtest_m4.py
92 lines (76 loc) · 2.61 KB
/
test_m4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Tests for the 'Contour density' metric (m4).
"""
# ----------------------------------------------------------------------------
# Imports
# ----------------------------------------------------------------------------
# Standard library modules
import pathlib
from typing import Any, List, Optional, Union
# Third-party modules
import pytest
# First-party modules
from aim.common import image_utils
from aim.metrics.m4.m4_contour_density import Metric
from tests.common.constants import DATA_TESTS_INPUT_VALUES_DIR
# ----------------------------------------------------------------------------
# Metadata
# ----------------------------------------------------------------------------
__author__ = "Markku Laine"
__date__ = "2021-12-11"
__email__ = "[email protected]"
__version__ = "1.1"
# ----------------------------------------------------------------------------
# Tests
# ----------------------------------------------------------------------------
@pytest.mark.parametrize(
["input_value", "expected_results"],
[
("aalto.fi_website.png", [0.036322265625]),
("transparent.png", [0.0]), # transparent -> white pixels
("white.png", [0.0]),
("black.png", [0.0]),
("gray.png", [0.0]),
("red.png", [0.0]),
("green.png", [0.0]),
("blue.png", [0.0]),
(
"white_50_transparent_50.png",
[0.0],
), # transparent -> white pixels
(
"black_50_transparent_50.png",
[0.00078125],
), # transparent -> white pixels
("white_50_black_50.png", [0.00078125]),
("red_50_green_50.png", [0.00078125]),
("green_50_blue_50.png", [0.00078125]),
("blue_50_red_50.png", [0.00078125]),
("4_high-contrast_shades_of_gray.png", [0.00234375]),
("4_low-contrast_shades_of_gray.png", [0.0]),
],
)
def test_contour_density_desktop(
input_value: str, expected_results: List[Any]
) -> None:
"""
Test contour density (desktop GUIs).
Args:
input_value: GUI image file name
expected_results: Expected results (list of measures)
"""
# Build GUI image file path
gui_image_filepath: pathlib.Path = (
pathlib.Path(DATA_TESTS_INPUT_VALUES_DIR) / input_value
)
# Read GUI image (PNG)
gui_image_png_base64: str = image_utils.read_image(gui_image_filepath)
# Execute metric
result: Optional[List[Union[int, float, str]]] = Metric.execute_metric(
gui_image_png_base64
)
# Test result
if result is not None:
assert result[0] == expected_results[0]