forked from scylladb/scylladb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatabase.cc
3940 lines (3522 loc) · 180 KB
/
database.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (C) 2014 ScyllaDB
*/
/*
* This file is part of Scylla.
*
* Scylla is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Scylla is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Scylla. If not, see <http://www.gnu.org/licenses/>.
*/
#include "log.hh"
#include "lister.hh"
#include "database.hh"
#include "unimplemented.hh"
#include "core/future-util.hh"
#include "db/commitlog/commitlog_entry.hh"
#include "db/system_keyspace.hh"
#include "db/consistency_level.hh"
#include "db/commitlog/commitlog.hh"
#include "db/config.hh"
#include "to_string.hh"
#include "query-result-writer.hh"
#include "nway_merger.hh"
#include "cql3/column_identifier.hh"
#include "core/seastar.hh"
#include <seastar/core/sleep.hh>
#include <seastar/core/rwlock.hh>
#include <seastar/core/metrics.hh>
#include <boost/algorithm/string/classification.hpp>
#include <boost/algorithm/string/split.hpp>
#include "sstables/sstables.hh"
#include "sstables/compaction.hh"
#include "sstables/remove.hh"
#include <boost/range/adaptor/transformed.hpp>
#include <boost/range/adaptor/map.hpp>
#include "locator/simple_snitch.hh"
#include <boost/algorithm/cxx11/all_of.hpp>
#include <boost/algorithm/cxx11/any_of.hpp>
#include <boost/function_output_iterator.hpp>
#include <boost/range/algorithm/heap_algorithm.hpp>
#include <boost/range/algorithm/remove_if.hpp>
#include <boost/range/algorithm/find.hpp>
#include <boost/range/algorithm/find_if.hpp>
#include <boost/range/algorithm/sort.hpp>
#include <boost/range/adaptor/map.hpp>
#include "frozen_mutation.hh"
#include "mutation_partition_applier.hh"
#include "core/do_with.hh"
#include "service/migration_manager.hh"
#include "service/storage_service.hh"
#include "mutation_query.hh"
#include "sstable_mutation_readers.hh"
#include <core/fstream.hh>
#include <seastar/core/enum.hh>
#include "utils/latency.hh"
#include "utils/flush_queue.hh"
#include "schema_registry.hh"
#include "service/priority_manager.hh"
#include "cell_locking.hh"
#include <seastar/core/execution_stage.hh>
#include "view_info.hh"
#include "checked-file-impl.hh"
#include "disk-error-handler.hh"
using namespace std::chrono_literals;
logging::logger dblog("database");
// Slight extension to the flush_queue type.
class column_family::memtable_flush_queue : public utils::flush_queue<db::replay_position> {
public:
template<typename Func, typename Post>
auto run_cf_flush(db::replay_position rp, Func&& func, Post&& post) {
// special case: empty rp, yet still data.
// We generate a few memtables with no valid, "high_rp", yet
// still containing data -> actual flush.
// And to make matters worse, we can initiate a flush of N such
// tables at the same time.
// Just queue them at the end of the queue and treat them as such.
if (rp == db::replay_position() && !empty()) {
rp = highest_key();
}
return run_with_ordered_post_op(rp, std::forward<Func>(func), std::forward<Post>(post));
}
};
// Used for tests where the CF exists without a database object. We need to pass a valid
// dirty_memory manager in that case.
thread_local dirty_memory_manager default_dirty_memory_manager;
lw_shared_ptr<memtable_list>
column_family::make_memory_only_memtable_list() {
auto get_schema = [this] { return schema(); };
return make_lw_shared<memtable_list>(std::move(get_schema), _config.dirty_memory_manager);
}
lw_shared_ptr<memtable_list>
column_family::make_memtable_list() {
auto seal = [this] (memtable_list::flush_behavior behavior) { return seal_active_memtable(behavior); };
auto get_schema = [this] { return schema(); };
return make_lw_shared<memtable_list>(std::move(seal), std::move(get_schema), _config.dirty_memory_manager);
}
lw_shared_ptr<memtable_list>
column_family::make_streaming_memtable_list() {
auto seal = [this] (memtable_list::flush_behavior behavior) { return seal_active_streaming_memtable(behavior); };
auto get_schema = [this] { return schema(); };
return make_lw_shared<memtable_list>(std::move(seal), std::move(get_schema), _config.streaming_dirty_memory_manager);
}
lw_shared_ptr<memtable_list>
column_family::make_streaming_memtable_big_list(streaming_memtable_big& smb) {
auto seal = [this, &smb] (memtable_list::flush_behavior) { return seal_active_streaming_memtable_big(smb); };
auto get_schema = [this] { return schema(); };
return make_lw_shared<memtable_list>(std::move(seal), std::move(get_schema), _config.streaming_dirty_memory_manager);
}
column_family::column_family(schema_ptr schema, config config, db::commitlog* cl, compaction_manager& compaction_manager, cell_locker_stats& cl_stats)
: _schema(std::move(schema))
, _config(std::move(config))
, _memtables(_config.enable_disk_writes ? make_memtable_list() : make_memory_only_memtable_list())
, _streaming_memtables(_config.enable_disk_writes ? make_streaming_memtable_list() : make_memory_only_memtable_list())
, _compaction_strategy(make_compaction_strategy(_schema->compaction_strategy(), _schema->compaction_strategy_options()))
, _sstables(make_lw_shared(_compaction_strategy.make_sstable_set(_schema)))
, _cache(_schema, sstables_as_mutation_source(), global_cache_tracker(), _config.max_cached_partition_size_in_bytes)
, _commitlog(cl)
, _compaction_manager(compaction_manager)
, _flush_queue(std::make_unique<memtable_flush_queue>())
, _counter_cell_locks(std::make_unique<cell_locker>(_schema, cl_stats))
{
if (!_config.enable_disk_writes) {
dblog.warn("Writes disabled, column family no durable.");
}
set_metrics();
}
partition_presence_checker
column_family::make_partition_presence_checker(lw_shared_ptr<sstables::sstable_set> sstables) {
auto sel = make_lw_shared(sstables->make_incremental_selector());
return [this, sstables = std::move(sstables), sel = std::move(sel)] (const dht::decorated_key& key) {
auto& sst = sel->select(key.token());
if (sst.empty()) {
return partition_presence_checker_result::definitely_doesnt_exist;
}
auto hk = sstables::sstable::make_hashed_key(*_schema, key.key());
for (auto&& s : sst) {
if (s->filter_has_key(hk)) {
return partition_presence_checker_result::maybe_exists;
}
}
return partition_presence_checker_result::definitely_doesnt_exist;
};
}
mutation_source
column_family::sstables_as_mutation_source() {
return mutation_source([this] (schema_ptr s,
const dht::partition_range& r,
const query::partition_slice& slice,
const io_priority_class& pc,
tracing::trace_state_ptr trace_state,
streamed_mutation::forwarding fwd) {
return make_sstable_reader(std::move(s), r, slice, pc, std::move(trace_state), fwd);
});
}
// define in .cc, since sstable is forward-declared in .hh
column_family::~column_family() {
}
logalloc::occupancy_stats column_family::occupancy() const {
logalloc::occupancy_stats res;
for (auto m : *_memtables) {
res += m->region().occupancy();
}
for (auto m : *_streaming_memtables) {
res += m->region().occupancy();
}
for (auto smb : _streaming_memtables_big) {
for (auto m : *smb.second->memtables) {
res += m->region().occupancy();
}
}
return res;
}
static
bool belongs_to_current_shard(const streamed_mutation& m) {
return dht::shard_of(m.decorated_key().token()) == engine().cpu_id();
}
// Stores ranges for all components of the same clustering key, index 0 referring to component
// range 0, and so on.
using ck_filter_clustering_key_components = std::vector<nonwrapping_range<bytes_view>>;
// Stores an entry for each clustering key range specified by the filter.
using ck_filter_clustering_key_ranges = std::vector<ck_filter_clustering_key_components>;
// Used to split a clustering key range into a range for each component.
// If a range in ck_filtering_all_ranges is composite, a range will be created
// for each component. If it's not composite, a single range is created.
// This split is needed to check for overlap in each component individually.
static ck_filter_clustering_key_ranges
ranges_for_clustering_key_filter(const schema_ptr& schema, const query::clustering_row_ranges& ck_filtering_all_ranges) {
ck_filter_clustering_key_ranges ranges;
for (auto& r : ck_filtering_all_ranges) {
// this vector stores a range for each component of a key, only one if not composite.
ck_filter_clustering_key_components composite_ranges;
if (r.is_full()) {
ranges.push_back({ nonwrapping_range<bytes_view>::make_open_ended_both_sides() });
continue;
}
auto start = r.start() ? r.start()->value().components() : clustering_key_prefix::make_empty().components();
auto end = r.end() ? r.end()->value().components() : clustering_key_prefix::make_empty().components();
auto start_it = start.begin();
auto end_it = end.begin();
// This test is enough because equal bounds in nonwrapping_range are inclusive.
auto is_singular = [&schema] (const auto& type_it, const bytes_view& b1, const bytes_view& b2) {
if (type_it == schema->clustering_key_type()->types().end()) {
throw std::runtime_error(sprint("clustering key filter passed more components than defined in schema of %s.%s",
schema->ks_name(), schema->cf_name()));
}
return (*type_it)->compare(b1, b2) == 0;
};
auto type_it = schema->clustering_key_type()->types().begin();
composite_ranges.reserve(schema->clustering_key_size());
// the rule is to ignore any component cn if another component ck (k < n) is not if the form [v, v].
// If we have [v1, v1], [v2, v2], ... {vl3, vr3}, ....
// then we generate [v1, v1], [v2, v2], ... {vl3, vr3}. Where { = '(' or '[', etc.
while (start_it != start.end() && end_it != end.end() && is_singular(type_it++, *start_it, *end_it)) {
composite_ranges.push_back(nonwrapping_range<bytes_view>({{ std::move(*start_it++), true }},
{{ std::move(*end_it++), true }}));
}
// handle a single non-singular tail element, if present
if (start_it != start.end() && end_it != end.end()) {
composite_ranges.push_back(nonwrapping_range<bytes_view>({{ std::move(*start_it), r.start()->is_inclusive() }},
{{ std::move(*end_it), r.end()->is_inclusive() }}));
} else if (start_it != start.end()) {
composite_ranges.push_back(nonwrapping_range<bytes_view>({{ std::move(*start_it), r.start()->is_inclusive() }}, {}));
} else if (end_it != end.end()) {
composite_ranges.push_back(nonwrapping_range<bytes_view>({}, {{ std::move(*end_it), r.end()->is_inclusive() }}));
}
ranges.push_back(std::move(composite_ranges));
}
return ranges;
}
// Return true if this sstable possibly stores clustering row(s) specified by ranges.
static inline bool
contains_rows(const sstables::sstable& sst, const schema_ptr& schema, const ck_filter_clustering_key_ranges& ranges) {
auto& clustering_key_types = schema->clustering_key_type()->types();
auto& clustering_components_ranges = sst.clustering_components_ranges();
if (!schema->clustering_key_size() || clustering_components_ranges.empty()) {
return true;
}
return boost::algorithm::any_of(ranges, [&] (const ck_filter_clustering_key_components& range) {
auto s = std::min(range.size(), clustering_components_ranges.size());
return boost::algorithm::all_of(boost::irange<unsigned>(0, s), [&] (unsigned i) {
auto& type = clustering_key_types[i];
return range[i].is_full() || range[i].overlaps(clustering_components_ranges[i], type->as_tri_comparator());
});
});
}
// Filter out sstables for reader using bloom filter and sstable metadata that keeps track
// of a range for each clustering component.
static std::vector<sstables::shared_sstable>
filter_sstable_for_reader(std::vector<sstables::shared_sstable>&& sstables, column_family& cf, const schema_ptr& schema,
const sstables::key& key, const query::partition_slice& slice) {
auto sstable_has_not_key = [&] (const sstables::shared_sstable& sst) {
return !sst->filter_has_key(key);
};
sstables.erase(boost::remove_if(sstables, sstable_has_not_key), sstables.end());
// no clustering filtering is applied if schema defines no clustering key or
// compaction strategy thinks it will not benefit from such an optimization.
if (!schema->clustering_key_size() || !cf.get_compaction_strategy().use_clustering_key_filter()) {
return sstables;
}
::cf_stats* stats = cf.cf_stats();
stats->clustering_filter_count++;
stats->sstables_checked_by_clustering_filter += sstables.size();
auto ck_filtering_all_ranges = slice.get_all_ranges();
// fast path to include all sstables if only one full range was specified.
// For example, this happens if query only specifies a partition key.
if (ck_filtering_all_ranges.size() == 1 && ck_filtering_all_ranges[0].is_full()) {
stats->clustering_filter_fast_path_count++;
stats->surviving_sstables_after_clustering_filter += sstables.size();
return sstables;
}
auto ranges = ranges_for_clustering_key_filter(schema, ck_filtering_all_ranges);
if (ranges.empty()) {
return {};
}
int64_t min_timestamp = std::numeric_limits<int64_t>::max();
auto sstable_has_clustering_key = [&min_timestamp, &schema, &ranges] (const sstables::shared_sstable& sst) {
if (!contains_rows(*sst, schema, ranges)) {
return false; // ordered after sstables that contain clustering rows.
} else {
min_timestamp = std::min(min_timestamp, sst->get_stats_metadata().min_timestamp);
return true;
}
};
auto sstable_has_relevant_tombstone = [&min_timestamp] (const sstables::shared_sstable& sst) {
const auto& stats = sst->get_stats_metadata();
// re-add sstable as candidate if it contains a tombstone that may cover a row in an included sstable.
return (stats.max_timestamp > min_timestamp && stats.estimated_tombstone_drop_time.bin.map.size());
};
auto skipped = std::partition(sstables.begin(), sstables.end(), sstable_has_clustering_key);
auto actually_skipped = std::partition(skipped, sstables.end(), sstable_has_relevant_tombstone);
sstables.erase(actually_skipped, sstables.end());
stats->surviving_sstables_after_clustering_filter += sstables.size();
return sstables;
}
class range_sstable_reader final : public combined_mutation_reader {
schema_ptr _s;
const dht::partition_range* _pr;
lw_shared_ptr<sstables::sstable_set> _sstables;
struct sstable_and_reader {
sstables::shared_sstable _sstable;
// This indirection is sad, but we need stable pointers to mutation
// readers. If this ever becomes a performance issue we could store
// mutation readers in an object pool (we don't need to preserve order
// and can have holes left in the container when elements are removed).
std::unique_ptr<mutation_reader> _reader;
bool operator<(const sstable_and_reader& other) const {
return _sstable < other._sstable;
}
struct less_compare {
bool operator()(const sstable_and_reader& a, const sstable_and_reader& b) {
return a < b;
}
bool operator()(const sstable_and_reader& a, const sstables::shared_sstable& b) {
return a._sstable < b;
}
bool operator()(const sstables::shared_sstable& a, const sstable_and_reader& b) {
return a < b._sstable;
}
};
};
std::vector<sstable_and_reader> _current_readers;
// Use a pointer instead of copying, so we don't need to regenerate the reader if
// the priority changes.
const io_priority_class& _pc;
tracing::trace_state_ptr _trace_state;
const query::partition_slice& _slice;
streamed_mutation::forwarding _fwd;
private:
std::unique_ptr<mutation_reader> create_reader(sstables::shared_sstable sst) {
tracing::trace(_trace_state, "Reading partition range {} from sstable {}", *_pr, seastar::value_of([&sst] { return sst->get_filename(); }));
// FIXME: make sstable::read_range_rows() return ::mutation_reader so that we can drop this wrapper.
mutation_reader reader =
make_mutation_reader<sstable_range_wrapping_reader>(sst, _s, *_pr, _slice, _pc, _fwd);
if (sst->is_shared()) {
reader = make_filtering_reader(std::move(reader), belongs_to_current_shard);
}
return std::make_unique<mutation_reader>(std::move(reader));
}
public:
range_sstable_reader(schema_ptr s,
lw_shared_ptr<sstables::sstable_set> sstables,
const dht::partition_range& pr,
const query::partition_slice& slice,
const io_priority_class& pc,
tracing::trace_state_ptr trace_state,
streamed_mutation::forwarding fwd)
: _s(s)
, _pr(&pr)
, _sstables(std::move(sstables))
, _pc(pc)
, _trace_state(std::move(trace_state))
, _slice(slice)
, _fwd(fwd)
{
auto ssts = _sstables->select(pr);
std::vector<mutation_reader*> readers;
readers.reserve(ssts.size());
_current_readers.reserve(ssts.size());
for (auto& sst : ssts) {
auto reader = create_reader(sst);
readers.emplace_back(reader.get());
_current_readers.emplace_back(sstable_and_reader { sst, std::move(reader) });
}
init_mutation_reader_set(std::move(readers));
}
range_sstable_reader(range_sstable_reader&&) = delete; // reader takes reference to member fields
virtual future<> fast_forward_to(const dht::partition_range& pr) override {
_pr = ≺
auto new_sstables = _sstables->select(pr);
boost::range::sort(new_sstables);
boost::range::sort(_current_readers);
std::vector<sstables::shared_sstable> to_add;
std::vector<sstable_and_reader> to_remove, unchanged;
sstable_and_reader::less_compare cmp;
boost::set_difference(new_sstables, _current_readers, std::back_inserter(to_add), cmp);
std::set_difference(_current_readers.begin(), _current_readers.end(), new_sstables.begin(), new_sstables.end(),
boost::back_move_inserter(to_remove), cmp);
std::set_intersection(_current_readers.begin(), _current_readers.end(), new_sstables.begin(), new_sstables.end(),
boost::back_move_inserter(unchanged), cmp);
std::vector<sstable_and_reader> to_add_sar;
boost::transform(to_add, std::back_inserter(to_add_sar), [&] (const sstables::shared_sstable& sst) {
return sstable_and_reader { sst, create_reader(sst) };
});
auto get_mutation_readers = [] (std::vector<sstable_and_reader>& ssts) {
std::vector<mutation_reader*> mrs;
mrs.reserve(ssts.size());
boost::range::transform(ssts, std::back_inserter(mrs), [] (const sstable_and_reader& s_a_r) {
return s_a_r._reader.get();
});
return mrs;
};
auto to_add_mrs = get_mutation_readers(to_add_sar);
auto to_remove_mrs = get_mutation_readers(to_remove);
unchanged.insert(unchanged.end(), std::make_move_iterator(to_add_sar.begin()), std::make_move_iterator(to_add_sar.end()));
return combined_mutation_reader::fast_forward_to(std::move(to_add_mrs), std::move(to_remove_mrs), pr).then([this, new_readers = std::move(unchanged)] () mutable {
_current_readers = std::move(new_readers);
});
}
};
class single_key_sstable_reader final : public mutation_reader::impl {
column_family* _cf;
schema_ptr _schema;
const dht::partition_range& _pr;
sstables::key _key;
std::vector<streamed_mutation> _mutations;
bool _done = false;
lw_shared_ptr<sstables::sstable_set> _sstables;
utils::estimated_histogram& _sstable_histogram;
// Use a pointer instead of copying, so we don't need to regenerate the reader if
// the priority changes.
const io_priority_class& _pc;
const query::partition_slice& _slice;
tracing::trace_state_ptr _trace_state;
streamed_mutation::forwarding _fwd;
public:
single_key_sstable_reader(column_family* cf,
schema_ptr schema,
lw_shared_ptr<sstables::sstable_set> sstables,
utils::estimated_histogram& sstable_histogram,
const dht::partition_range& pr, // must be singular
const query::partition_slice& slice,
const io_priority_class& pc,
tracing::trace_state_ptr trace_state,
streamed_mutation::forwarding fwd)
: _cf(cf)
, _schema(std::move(schema))
, _pr(pr)
, _key(sstables::key::from_partition_key(*_schema, *pr.start()->value().key()))
, _sstables(std::move(sstables))
, _sstable_histogram(sstable_histogram)
, _pc(pc)
, _slice(slice)
, _trace_state(std::move(trace_state))
, _fwd(fwd)
{ }
virtual future<streamed_mutation_opt> operator()() override {
if (_done) {
return make_ready_future<streamed_mutation_opt>();
}
auto candidates = filter_sstable_for_reader(_sstables->select(_pr), *_cf, _schema, _key, _slice);
return parallel_for_each(std::move(candidates),
[this](const lw_shared_ptr<sstables::sstable>& sstable) {
tracing::trace(_trace_state, "Reading key {} from sstable {}", _pr, seastar::value_of([&sstable] { return sstable->get_filename(); }));
return sstable->read_row(_schema, _pr.start()->value(), _slice, _pc, _fwd).then([this](auto smo) {
if (smo) {
_mutations.emplace_back(std::move(*smo));
}
});
}).then([this] () -> streamed_mutation_opt {
_done = true;
if (_mutations.empty()) {
return { };
}
_sstable_histogram.add(_mutations.size());
return merge_mutations(std::move(_mutations));
});
}
};
mutation_reader
column_family::make_sstable_reader(schema_ptr s,
const dht::partition_range& pr,
const query::partition_slice& slice,
const io_priority_class& pc,
tracing::trace_state_ptr trace_state,
streamed_mutation::forwarding fwd) const {
// restricts a reader's concurrency if the configuration specifies it
auto restrict_reader = [&] (mutation_reader&& in) {
auto&& config = [this, &pc] () -> const restricted_mutation_reader_config& {
if (service::get_local_streaming_read_priority().id() == pc.id()) {
return _config.streaming_read_concurrency_config;
}
return _config.read_concurrency_config;
}();
if (config.sem) {
return make_restricted_reader(config, 1, std::move(in));
} else {
return std::move(in);
}
};
if (pr.is_singular() && pr.start()->value().has_key()) {
const dht::ring_position& pos = pr.start()->value();
if (dht::shard_of(pos.token()) != engine().cpu_id()) {
return make_empty_reader(); // range doesn't belong to this shard
}
return restrict_reader(make_mutation_reader<single_key_sstable_reader>(const_cast<column_family*>(this), std::move(s), _sstables,
_stats.estimated_sstable_per_read, pr, slice, pc, std::move(trace_state), fwd));
} else {
// range_sstable_reader is not movable so we need to wrap it
return restrict_reader(make_mutation_reader<range_sstable_reader>(std::move(s), _sstables, pr, slice, pc, std::move(trace_state), fwd));
}
}
// Exposed for testing, not performance critical.
future<column_family::const_mutation_partition_ptr>
column_family::find_partition(schema_ptr s, const dht::decorated_key& key) const {
return do_with(dht::partition_range::make_singular(key), [s = std::move(s), this] (auto& range) {
return do_with(this->make_reader(s, range), [] (mutation_reader& reader) {
return reader().then([] (auto sm) {
return mutation_from_streamed_mutation(std::move(sm));
}).then([] (mutation_opt&& mo) -> std::unique_ptr<const mutation_partition> {
if (!mo) {
return {};
}
return std::make_unique<const mutation_partition>(std::move(mo->partition()));
});
});
});
}
future<column_family::const_mutation_partition_ptr>
column_family::find_partition_slow(schema_ptr s, const partition_key& key) const {
return find_partition(s, dht::global_partitioner().decorate_key(*s, key));
}
future<column_family::const_row_ptr>
column_family::find_row(schema_ptr s, const dht::decorated_key& partition_key, clustering_key clustering_key) const {
return find_partition(s, partition_key).then([clustering_key = std::move(clustering_key), s] (const_mutation_partition_ptr p) {
if (!p) {
return make_ready_future<const_row_ptr>();
}
auto r = p->find_row(*s, clustering_key);
if (r) {
// FIXME: remove copy if only one data source
return make_ready_future<const_row_ptr>(std::make_unique<row>(*r));
} else {
return make_ready_future<const_row_ptr>();
}
});
}
mutation_reader
column_family::make_reader(schema_ptr s,
const dht::partition_range& range,
const query::partition_slice& slice,
const io_priority_class& pc,
tracing::trace_state_ptr trace_state,
streamed_mutation::forwarding fwd) const {
if (_virtual_reader) {
return (*_virtual_reader)(s, range, slice, pc, trace_state, fwd);
}
std::vector<mutation_reader> readers;
readers.reserve(_memtables->size() + 1);
// We're assuming that cache and memtables are both read atomically
// for single-key queries, so we don't need to special case memtable
// undergoing a move to cache. At any given point in time between
// deferring points the sum of data in memtable and cache is coherent. If
// single-key queries for each data source were performed across deferring
// points, it would be possible that partitions which are ahead of the
// memtable cursor would be placed behind the cache cursor, resulting in
// those partitions being missing in the combined reader.
//
// We need to handle this in range queries though, as they are always
// deferring. scanning_reader from memtable.cc is falling back to reading
// the sstable when memtable is flushed. After memtable is moved to cache,
// new readers will no longer use the old memtable, but until then
// performance may suffer. We should fix this when we add support for
// range queries in cache, so that scans can always be satisfied form
// memtable and cache only, as long as data is not evicted.
//
// https://github.com/scylladb/scylla/issues/309
// https://github.com/scylladb/scylla/issues/185
for (auto&& mt : *_memtables) {
readers.emplace_back(mt->make_reader(s, range, slice, pc, trace_state, fwd));
}
if (_config.enable_cache) {
readers.emplace_back(_cache.make_reader(s, range, slice, pc, std::move(trace_state), fwd));
} else {
readers.emplace_back(make_sstable_reader(s, range, slice, pc, std::move(trace_state), fwd));
}
return make_combined_reader(std::move(readers));
}
mutation_reader
column_family::make_streaming_reader(schema_ptr s,
const dht::partition_range& range) const {
auto& slice = query::full_slice;
auto& pc = service::get_local_streaming_read_priority();
std::vector<mutation_reader> readers;
readers.reserve(_memtables->size() + 1);
for (auto&& mt : *_memtables) {
readers.emplace_back(mt->make_reader(s, range, slice, pc, nullptr, streamed_mutation::forwarding::no));
}
readers.emplace_back(make_sstable_reader(s, range, slice, pc, nullptr, streamed_mutation::forwarding::no));
return make_combined_reader(std::move(readers));
}
mutation_reader
column_family::make_streaming_reader(schema_ptr s,
const dht::partition_range_vector& ranges) const {
auto& slice = query::full_slice;
auto& pc = service::get_local_streaming_read_priority();
auto source = mutation_source([this] (schema_ptr s, const dht::partition_range& range, const query::partition_slice& slice,
const io_priority_class& pc, tracing::trace_state_ptr trace_state, streamed_mutation::forwarding fwd) {
std::vector<mutation_reader> readers;
readers.reserve(_memtables->size() + 1);
for (auto&& mt : *_memtables) {
readers.emplace_back(mt->make_reader(s, range, slice, pc, trace_state, fwd));
}
readers.emplace_back(make_sstable_reader(s, range, slice, pc, std::move(trace_state), fwd));
return make_combined_reader(std::move(readers));
});
return make_multi_range_reader(s, std::move(source), ranges, slice, pc, nullptr, streamed_mutation::forwarding::no);
}
future<std::vector<locked_cell>> column_family::lock_counter_cells(const mutation& m, timeout_clock::time_point timeout) {
assert(m.schema() == _counter_cell_locks->schema());
return _counter_cell_locks->lock_cells(m.decorated_key(), partition_cells_range(m.partition()), timeout);
}
// Not performance critical. Currently used for testing only.
template <typename Func>
future<bool>
column_family::for_all_partitions(schema_ptr s, Func&& func) const {
static_assert(std::is_same<bool, std::result_of_t<Func(const dht::decorated_key&, const mutation_partition&)>>::value,
"bad Func signature");
struct iteration_state {
mutation_reader reader;
Func func;
bool ok = true;
bool empty = false;
public:
bool done() const { return !ok || empty; }
iteration_state(schema_ptr s, const column_family& cf, Func&& func)
: reader(cf.make_reader(std::move(s)))
, func(std::move(func))
{ }
};
return do_with(iteration_state(std::move(s), *this, std::move(func)), [] (iteration_state& is) {
return do_until([&is] { return is.done(); }, [&is] {
return is.reader().then([] (auto sm) {
return mutation_from_streamed_mutation(std::move(sm));
}).then([&is](mutation_opt&& mo) {
if (!mo) {
is.empty = true;
} else {
is.ok = is.func(mo->decorated_key(), mo->partition());
}
});
}).then([&is] {
return is.ok;
});
});
}
future<bool>
column_family::for_all_partitions_slow(schema_ptr s, std::function<bool (const dht::decorated_key&, const mutation_partition&)> func) const {
return for_all_partitions(std::move(s), std::move(func));
}
static bool belongs_to_current_shard(const std::vector<shard_id>& shards) {
return boost::find(shards, engine().cpu_id()) != shards.end();
}
static bool belongs_to_other_shard(const std::vector<shard_id>& shards) {
return shards.size() != size_t(belongs_to_current_shard(shards));
}
future<sstables::shared_sstable>
column_family::open_sstable(sstables::foreign_sstable_open_info info, sstring dir, int64_t generation,
sstables::sstable::version_types v, sstables::sstable::format_types f) {
auto sst = make_lw_shared<sstables::sstable>(_schema, dir, generation, v, f);
if (!belongs_to_current_shard(info.owners)) {
dblog.debug("sstable {} not relevant for this shard, ignoring", sst->get_filename());
sst->mark_for_deletion();
return make_ready_future<sstables::shared_sstable>();
}
return sst->load(std::move(info)).then([sst] () mutable {
return make_ready_future<sstables::shared_sstable>(std::move(sst));
});
}
void column_family::load_sstable(sstables::shared_sstable& sst, bool reset_level) {
auto shards = sst->get_shards_for_this_sstable();
if (belongs_to_other_shard(shards)) {
// If we're here, this sstable is shared by this and other
// shard(s). Shared sstables cannot be deleted until all
// shards compacted them, so to reduce disk space usage we
// want to start splitting them now.
// However, we need to delay this compaction until we read all
// the sstables belonging to this CF, because we need all of
// them to know which tombstones we can drop, and what
// generation number is free.
_sstables_need_rewrite.emplace(sst->generation(), sst);
}
if (reset_level) {
// When loading a migrated sstable, set level to 0 because
// it may overlap with existing tables in levels > 0.
// This step is optional, because even if we didn't do this
// scylla would detect the overlap, and bring back some of
// the sstables to level 0.
sst->set_sstable_level(0);
}
add_sstable(sst, std::move(shards));
}
void column_family::update_stats_for_new_sstable(uint64_t disk_space_used_by_sstable, std::vector<unsigned>&& shards_for_the_sstable) {
assert(!shards_for_the_sstable.empty());
if (*boost::min_element(shards_for_the_sstable) == engine().cpu_id()) {
_stats.live_disk_space_used += disk_space_used_by_sstable;
_stats.total_disk_space_used += disk_space_used_by_sstable;
_stats.live_sstable_count++;
}
}
void column_family::add_sstable(lw_shared_ptr<sstables::sstable> sstable, std::vector<unsigned>&& shards_for_the_sstable) {
// allow in-progress reads to continue using old list
_sstables = make_lw_shared(*_sstables);
update_stats_for_new_sstable(sstable->bytes_on_disk(), std::move(shards_for_the_sstable));
_sstables->insert(std::move(sstable));
}
future<>
column_family::update_cache(memtable& m, lw_shared_ptr<sstables::sstable_set> old_sstables) {
if (_config.enable_cache) {
// be careful to use the old sstable list, since the new one will hit every
// mutation in m.
return _cache.update(m, make_partition_presence_checker(std::move(old_sstables)));
} else {
return m.clear_gently();
}
}
// FIXME: because we are coalescing, it could be that mutations belonging to the same
// range end up in two different tables. Technically, we should wait for both. However,
// the only way we have to make this happen now is to wait on all previous writes. This
// certainly is an overkill, so we won't do it. We can fix this longer term by looking
// at the PREPARE messages, and then noting what is the minimum future we should be
// waiting for.
future<>
column_family::seal_active_streaming_memtable_delayed() {
auto old = _streaming_memtables->back();
if (old->empty()) {
return make_ready_future<>();
}
if (!_delayed_streaming_flush.armed()) {
// We don't want to wait for too long, because the incoming mutations will not be available
// until we flush them to SSTables. On top of that, if the sender ran out of messages, it won't
// send more until we respond to some - which depends on these futures resolving. Sure enough,
// the real fix for that second one is to have better communication between sender and receiver,
// but that's not realistic ATM. If we did have better negotiation here, we would not need a timer
// at all.
_delayed_streaming_flush.arm(2s);
}
return with_gate(_streaming_flush_gate, [this, old] {
return _waiting_streaming_flushes.get_shared_future();
});
}
future<>
column_family::seal_active_streaming_memtable_immediate() {
auto old = _streaming_memtables->back();
if (old->empty()) {
return make_ready_future<>();
}
_streaming_memtables->add_memtable();
_streaming_memtables->erase(old);
auto guard = _streaming_flush_phaser.start();
return with_gate(_streaming_flush_gate, [this, old] {
_delayed_streaming_flush.cancel();
auto current_waiters = std::exchange(_waiting_streaming_flushes, shared_promise<>());
auto f = current_waiters.get_shared_future(); // for this seal
with_lock(_sstables_lock.for_read(), [this, old] {
auto newtab = make_lw_shared<sstables::sstable>(_schema,
_config.datadir, calculate_generation_for_new_table(),
sstables::sstable::version_types::ka,
sstables::sstable::format_types::big);
newtab->set_unshared();
auto&& priority = service::get_local_streaming_write_priority();
// This is somewhat similar to the main memtable flush, but with important differences.
//
// The first difference, is that we don't keep aggregate collectd statistics about this one.
// If we ever need to, we'll keep them separate statistics, but we don't want to polute the
// main stats about memtables with streaming memtables.
//
// Second, we will not bother touching the cache after this flush. The current streaming code
// will invalidate the ranges it touches, so we won't do it twice. Even when that changes, the
// cache management code in here will have to differ from the main memtable's one. Please see
// the comment at flush_streaming_mutations() for details.
//
// Lastly, we don't have any commitlog RP to update, and we don't need to deal manipulate the
// memtable list, since this memtable was not available for reading up until this point.
return newtab->write_components(*old, incremental_backups_enabled(), priority).then([this, newtab, old] {
return newtab->open_data();
}).then([this, old, newtab] () {
add_sstable(newtab, {engine().cpu_id()});
trigger_compaction();
}).handle_exception([] (auto ep) {
dblog.error("failed to write streamed sstable: {}", ep);
return make_exception_future<>(ep);
});
// We will also not have any retry logic. If we fail here, we'll fail the streaming and let
// the upper layers know. They can then apply any logic they want here.
}).then_wrapped([this, current_waiters = std::move(current_waiters)] (future <> f) mutable {
if (f.failed()) {
current_waiters.set_exception(f.get_exception());
} else {
current_waiters.set_value();
}
});
return f;
}).finally([guard = std::move(guard)] { });
}
future<> column_family::seal_active_streaming_memtable_big(streaming_memtable_big& smb) {
auto old = smb.memtables->back();
if (old->empty()) {
return make_ready_future<>();
}
smb.memtables->add_memtable();
smb.memtables->erase(old);
return with_gate(_streaming_flush_gate, [this, old, &smb] {
return with_gate(smb.flush_in_progress, [this, old, &smb] {
return with_lock(_sstables_lock.for_read(), [this, old, &smb] {
auto newtab = make_lw_shared<sstables::sstable>(_schema,
_config.datadir, calculate_generation_for_new_table(),
sstables::sstable::version_types::ka,
sstables::sstable::format_types::big);
newtab->set_unshared();
auto&& priority = service::get_local_streaming_write_priority();
return newtab->write_components(*old, incremental_backups_enabled(), priority, true).then([this, newtab, old, &smb] {
smb.sstables.emplace_back(newtab);
}).handle_exception([] (auto ep) {
dblog.error("failed to write streamed sstable: {}", ep);
return make_exception_future<>(ep);
});
});
});
});
}
future<>
column_family::seal_active_memtable(memtable_list::flush_behavior ignored) {
auto old = _memtables->back();
dblog.debug("Sealing active memtable of {}.{}, partitions: {}, occupancy: {}", _schema->cf_name(), _schema->ks_name(), old->partition_count(), old->occupancy());
if (old->empty()) {
dblog.debug("Memtable is empty");
return make_ready_future<>();
}
_memtables->add_memtable();
assert(_highest_flushed_rp < old->replay_position()
|| (_highest_flushed_rp == db::replay_position() && old->replay_position() == db::replay_position())
);
_highest_flushed_rp = old->replay_position();
return _flush_queue->run_cf_flush(old->replay_position(), [old, this] {
auto memtable_size = old->occupancy().total_space();
_config.cf_stats->pending_memtables_flushes_count++;
_config.cf_stats->pending_memtables_flushes_bytes += memtable_size;
return repeat([this, old] {
return with_lock(_sstables_lock.for_read(), [this, old] {
_flush_queue->check_open_gate();
return try_flush_memtable_to_sstable(old);
});
}).then([this, memtable_size] {
_config.cf_stats->pending_memtables_flushes_count--;
_config.cf_stats->pending_memtables_flushes_bytes -= memtable_size;
});
}, [old, this] {
if (_commitlog) {
_commitlog->discard_completed_segments(_schema->id(), old->replay_position());
}
});
// FIXME: release commit log
// FIXME: provide back-pressure to upper layers
}
future<stop_iteration>
column_family::try_flush_memtable_to_sstable(lw_shared_ptr<memtable> old) {
auto gen = calculate_generation_for_new_table();
auto newtab = make_lw_shared<sstables::sstable>(_schema,
_config.datadir, gen,
sstables::sstable::version_types::ka,
sstables::sstable::format_types::big);
newtab->set_unshared();
dblog.debug("Flushing to {}", newtab->get_filename());
// Note that due to our sharded architecture, it is possible that
// in the face of a value change some shards will backup sstables
// while others won't.
//
// This is, in theory, possible to mitigate through a rwlock.
// However, this doesn't differ from the situation where all tables
// are coming from a single shard and the toggle happens in the
// middle of them.
//
// The code as is guarantees that we'll never partially backup a
// single sstable, so that is enough of a guarantee.
auto&& priority = service::get_local_memtable_flush_priority();
return newtab->write_components(*old, incremental_backups_enabled(), priority).then([this, newtab, old] {
return newtab->open_data();
}).then_wrapped([this, old, newtab] (future<> ret) {
dblog.debug("Flushing to {} done", newtab->get_filename());
try {
ret.get();
// Cache updates are serialized because partition_presence_checker
// is using data source snapshot created before the update starts, so that
// we can use incremental_selector. If updates were done concurrently we
// could mispopulate due to stale presence information.
return with_semaphore(_cache_update_sem, 1, [this, old, newtab] {
// We must add sstable before we call update_cache(), because
// memtable's data after moving to cache can be evicted at any time.
auto old_sstables = _sstables;
add_sstable(newtab, {engine().cpu_id()});
old->mark_flushed(newtab);
trigger_compaction();
return update_cache(*old, std::move(old_sstables));
}).then_wrapped([this, newtab, old] (future<> f) {
try {
f.get();
} catch(...) {
dblog.error("failed to move memtable for {} to cache: {}", newtab->get_filename(), std::current_exception());
}