-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathanalyze_quizzes.py
198 lines (180 loc) · 7.65 KB
/
analyze_quizzes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import json
import yaml
import os
import math
import requests
import requests_cache
import argparse
import re
import csv
import dateutil.parser
from datetime import datetime
from pprint import pprint
from collections import Counter, defaultdict
try:
from tqdm import tqdm
except:
print("TQDM is not installed. No progress bars will be available.")
tqdm = list
import pandas as pd
import scipy as sp
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
from canvas_tools import get, post, put, delete, progress_loop
from canvas_tools import get_setting, get_courses, download_file
from canvas_tools import from_canvas_date, to_canvas_date
from canvas_tools import yaml_load, load_settings
from html_tools import strip_tags, to_percent
from quiz_question_types import QUESTION_TYPES, DefaultQuestionType
def clean_name(filename):
return "".join([c for c in filename
if c.isalpha() or c.isdigit()
or c in (' ', '.')]).rstrip()
quiet = True
def log(*args):
if not quiet:
print(*args)
def download_all_grades(course):
enrollments = get('enrollments', course=course,
data={'type[]': 'StudentEnrollment',
'state[]': ['active','completed']},
all=True)
return {str(e['user_id']): e['grades']['current_score']
for e in enrollments}
#multiple_dropdowns_question
def download_quiz_report(quiz_id, course):
return post('quizzes/{}/reports'.format(quiz_id),
course=course,
data={'quiz_report[report_type]': 'student_analysis',
'quiz_report[includes_all_versions]': True,
'include': ['file', 'progress']})
def download_quiz(quiz_id, format, filename, course, ignore):
report = download_quiz_report(quiz_id, course)
if 'errors' in report:
log("Failure:", report['errors'])
return False
if 'error_report_id' in report:
log("Failure:", repr(report))
return False
if 'file' not in report:
pid = report['progress_url'].rsplit('/')[-1]
success = progress_loop(pid, 5)
if success:
report = download_quiz_report(quiz_id, course)
else:
log("Failure: Could not generate report for", quiz_id)
return False
title = report['file']['display_name']
display_name = clean_name(title)
if filename is None:
# Make sure they have a dates folder
if not os.path.exists('quizzes/'):
os.mkdir('quizzes/')
path = 'quizzes/{}/'.format(course)
os.makedirs(path, exist_ok=True)
path += display_name
else:
path = filename
download_file(report['file']['url'], path)
return process_quiz(quiz_id, format, path, course)
def download_all_quizzes(format, filename, course, ignore):
quizzes = get('quizzes', all=True, course=course)
paths = [download_quiz(quiz['id'], format, filename, course, ignore)
for quiz in quizzes]
if format == 'json':
all_data = []
for path in paths:
with open(path) as inp:
all_data += json.load(inp)
if filename is None:
path = 'quizzes/{}/'.format(course)
os.makedirs(path, exist_ok=True)
path += 'combined.json'
else:
path = filename+'/combined.json'
with open(path, 'w') as out:
json.dump(all_data, out)
return paths
def change_extension(path, new_extension):
return path[:-3]+new_extension
def process_quiz(quiz_id, format, path, course):
print(quiz_id)
# Download overall course grades for course-level discrimation
course_scores = download_all_grades(course)
# Process quiz data
df = pd.read_csv(path, dtype=str)
anonymous = 'id' not in df.columns
FIRST_COLUMN = 5 if anonymous else 8
# Grab the header as a single row to extract point columns
header = pd.read_csv(path, nrows=1, header=None)
# Grab out the actual columns of data
df_submissions_subtable = df.iloc[:,FIRST_COLUMN:-3]
attempts = df.iloc[:,FIRST_COLUMN-1].map(int)
user_ids = None if anonymous else df.iloc[:,1]
overall_score = df.iloc[:,-1].map(float)
# Question IDs are stored in alternating columns as "ID: Text"
question_ids = [x.split(':')[0] for x in
df_submissions_subtable.columns[::2]]
results = []
for i, question_id in enumerate(question_ids):
# Actual student submission is in alternating columns
submissions = df_submissions_subtable.iloc[:, i*2]
scores = df_submissions_subtable.iloc[:, 1+i*2].map(float)
max_score = float(header.iloc[0,FIRST_COLUMN+1+i*2])
question = get('quizzes/{quiz}/questions/{qid}'
.format(quiz=quiz_id, qid=question_id),
course=course)
question_type = question['question_type']
processor = QUESTION_TYPES.get(question_type, DefaultQuestionType)
q = processor(question, submissions, attempts, user_ids,
scores, overall_score, course_scores, max_score,
anonymous, path)
q.analyze()
if format == 'text':
print(q.to_text().encode("ascii", errors='replace')
.decode())
elif format == 'html':
q.to_html()
elif format == 'pdf':
q.to_html()
elif format == 'json':
results.append(q.to_json())
if format == 'json':
json_path = change_extension(path, 'json')
with open(json_path, 'w') as out:
json.dump(results, out, indent=2)
return json_path
return True
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Analyze quizzes')
parser.add_argument('--course', '-c', help='The specific course to perform operations on. Should be a valid course label, not the ID')
parser.add_argument('--settings', '-s', help='The settings file to use. Defaults to "settings.yaml". If the file does not exist, it will be created.',
default='settings.yaml')
parser.add_argument('--id', '-i', help='The specific quiz ID to analyze. If not specified, all quizzes are used', default=None)
parser.add_argument('--format', '-t', help='What format to generate the result into.', choices=['html', 'json', 'raw', 'pdf', 'text', 'yaml'], default='raw')
parser.add_argument('--file', '-f', help='The path to the quiz folder. Otherwise, a default folder will be chosen based on the course name (For a course named CS1014, generate "quizzes/CS1014/").', default=None)
parser.add_argument('--ignore', '-x', help='Ignores any cached files in processing the quiz results', action='store_true', default=False)
parser.add_argument('--quiet', '-q', help='Silences the output', action='store_true', default=False)
args = parser.parse_args()
load_settings(args.settings)
if not args.ignore:
requests_cache.install_cache('quizzes_cache')
# Override default course
if args.course:
course = args.course
if course not in get_courses():
raise Exception("Unknown course name: {}".format(course))
else:
course = get_setting('course')
# Handle quiet
quiet = args.quiet
# Handle the dates exporting
if args.id is None:
successes = download_all_quizzes(args.format, args.file,
args.course, args.ignore)
log("Finished", len(successes), "reports.")
log(sum(map(bool, successes)), "were successful.")
else:
download_quiz(args.id, args.format, args.file, args.course,
args.ignore)