Skip to content

Latest commit

 

History

History
33 lines (27 loc) · 932 Bytes

readme.md

File metadata and controls

33 lines (27 loc) · 932 Bytes

Classifying Iris

Run iris_sklearn.py in local environment.

$ conda install scikit-learn
$ az ml execute start -c local iris_sklearn.py

Run iris_sklearn.py in a local Docker container.

$ az ml execute start -c docker iris_sklearn.py

Create myvm.compute file to point to a remote VM

$ az ml computecontext attach --name <myvm> --address <ip address or FQDN> --username <username> --password <pwd>

Run iris_pyspark.py in a Docker container (with Spark) in a remote VM:

$ az ml execute start -c myvm iris_pyspark.py

Create myhdi.compute to point to an HDI cluster

$ az ml computecontext attach --name <myhdi> --address <ip address or FQDN of the head node> --username <username> --password <pwd> --cluster

Run it in a remote HDInsight cluster:

$ az ml execute start -c myhdi iris_pyspark.py

For more details on configuring execution targets, go to: http://aka.ms/vienna-docs-exec