-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
164 lines (139 loc) · 6.08 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import keras
from keras import backend as K
from keras.models import (Sequential, Model)
from keras.regularizers import l2
from keras.layers import (Conv1D, MaxPool1D, BatchNormalization, GlobalAvgPool1D, Multiply, GlobalMaxPool1D,
Dense, Dropout, Activation, Reshape, Input, Concatenate, Add)
from keras.utils import to_categorical
from keras.callbacks import ModelCheckpoint
from sklearn.model_selection import train_test_split
import numpy as np
from tqdm import tqdm
import scipy
import scipy.io.wavfile as swave
from skimage.transform import resize
import prep
import tensorflow as tf
#the model itself, and training it
DATA_PATH = "./data/"
def se_fn(x, amplifying_ratio):
num_features = x.shape[-1].value
x = GlobalAvgPool1D()(x)
x = Reshape((1, num_features))(x)
x = Dense(num_features * amplifying_ratio, activation='relu', kernel_initializer='glorot_uniform')(x)
x = Dense(num_features, activation='sigmoid', kernel_initializer='glorot_uniform')(x)
return x
def basic_block(x, num_features, weight_decay, _):
x = Conv1D(num_features, kernel_size=3, padding='same', use_bias=True,
kernel_regularizer=l2(weight_decay), kernel_initializer='he_uniform')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPool1D(pool_size=3)(x)
return x
def rese_block(x, num_features, weight_decay, amplifying_ratio):
if num_features != x.shape[-1].value:
shortcut = Conv1D(num_features, kernel_size=1, padding='same', use_bias=True,
kernel_regularizer=l2(weight_decay), kernel_initializer='glorot_uniform')(x)
shortcut = BatchNormalization()(shortcut)
else:
shortcut = x
x = Conv1D(num_features, kernel_size=3, padding='same', use_bias=True,
kernel_regularizer=l2(weight_decay), kernel_initializer='he_uniform')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Dropout(0.2)(x)
x = Conv1D(num_features, kernel_size=3, padding='same', use_bias=True,
kernel_regularizer=l2(weight_decay), kernel_initializer='he_uniform')(x)
x = BatchNormalization()(x)
if amplifying_ratio > 0:
x = Multiply()([x, se_fn(x, amplifying_ratio)])
x = Add()([shortcut, x])
x = Activation('relu')(x)
x = MaxPool1D(pool_size=3)(x)
return x
def get_model(block_type='basic', multi=True, init_features=128, amplifying_ratio=16,
drop_rate=0.5, weight_decay=0., num_classes=12):
if block_type == 'rese':
block = rese_block
elif block_type == 'basic':
block = basic_block
else:
raise Exception('Unknown block type: ' + block_type)
xc = Input(shape=(59049,1))
x = Reshape([-1, 1])(xc)
x = Conv1D(init_features, kernel_size=3, strides=3, padding='valid', use_bias=True,
kernel_regularizer=l2(weight_decay), kernel_initializer='he_uniform')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
num_features = init_features
layer_outputs = []
for i in range(9):
num_features *= 2 if (i == 2 or i == 8) else 1
x = block(x, num_features, weight_decay, amplifying_ratio)
layer_outputs.append(x)
if (multi) and (block_type == 'rese') :
x = Concatenate()([GlobalMaxPool1D()(output) for output in layer_outputs[-3:]])
else:
x = GlobalMaxPool1D()(x)
x = Dense(x.shape[-1].value, kernel_initializer='glorot_uniform')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
if drop_rate > 0.:
x = Dropout(drop_rate)(x)
x = Dense(num_classes, activation='softmax', kernel_initializer='glorot_uniform')(x)
model = Model(inputs = xc, outputs = x)
return model
def generator(x,y,batch_size=10):
i = 0
while(True):
if i+batch_size >= y.shape[0]:
i = 0
x_batch = list()
y_batch = list()
for j in range(i,i+batch_size):
x_batch.append(x[j])
y_batch.append(y[j])
i = i+batch_size
x_batch = np.array(x_batch)
yield x_batch,np.array(y_batch)
def f1(y_true, y_pred):
def recall(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
recall = true_positives / (possible_positives + K.epsilon())
return recall
def precision(y_true, y_pred):
true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
precision = true_positives / (predicted_positives + K.epsilon())
return precision
precision = precision(y_true, y_pred)
recall = recall(y_true, y_pred)
return 2*((precision*recall)/(precision+recall+K.epsilon()))
def main():
net_type = input("What model do you want to train? \nType 'basic' for Sample CNN model and 'rese' for the ReSE-2-Multi model.\n")
if net_type == "basic":
print("Building a Sample CNN model.\n")
elif net_type == "rese":
print("Building a ReSE-2-Multi model.\n")
else:
raise Exception('Unknown model type: ' + net_type)
x_train, x_test, y_train, y_test = prep.get_train_test()
out = get_model(block_type=net_type)
out.summary()
out.compile(optimizer = keras.optimizers.Adam(), loss = keras.losses.categorical_crossentropy, metrics=['accuracy', f1])
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
batch_size = 10
steps_per_epoch = y_train.shape[0]//batch_size
validation_steps = y_test.shape[0]//batch_size
train = generator(x_train,y_train,batch_size=batch_size)
test = generator(x_test,y_test,batch_size=batch_size)
if net_type == "basic":
checkpointer = ModelCheckpoint(filepath='bestModelSCNN.hdf5', verbose=1, save_best_only=True)
else:
checkpointer = ModelCheckpoint(filepath='bestModelReSE.hdf5', verbose=1, save_best_only=True)
out.fit_generator(train,steps_per_epoch=steps_per_epoch,epochs=10,validation_data=test,validation_steps=validation_steps,callbacks=[checkpointer])
if __name__ == '__main__':
main()