From 5c6be50a4b5b8078c3897a6beb5cd1089687afc8 Mon Sep 17 00:00:00 2001 From: Mugdha Polimera Date: Mon, 6 Nov 2023 17:42:13 -0500 Subject: [PATCH] copernicus pagination bugfix --- adsingestp/parsers/copernicus.py | 3 +- .../input/copernicus_wes-8-1625-2023.xml | 100 +++++++++ .../Copernicus_ESSD_essd-15-3075-2023.json | 5 + .../Copernicus_GeChr_gchron-5-323-2023.json | 5 + ...SPAn_isprs-annals-X-M-1-2023-237-2023.json | 4 + ...prs-archives-XLVIII-M-2-2023-721-2023.json | 4 + .../copernicus_ESSD_essd-15-3075-2023.json | 5 + .../copernicus_GeChr_gchron-5-323-2023.json | 5 + ...SPAn_isprs-annals-X-M-1-2023-237-2023.json | 4 + ...prs-archives-XLVIII-M-2-2023-721-2023.json | 4 + .../output/copernicus_wes-8-1625-2023.json | 199 ++++++++++++++++++ tests/test_copernicus.py | 1 + 12 files changed, 338 insertions(+), 1 deletion(-) create mode 100644 tests/stubdata/input/copernicus_wes-8-1625-2023.xml create mode 100644 tests/stubdata/output/copernicus_wes-8-1625-2023.json diff --git a/adsingestp/parsers/copernicus.py b/adsingestp/parsers/copernicus.py index bf53d5a..d41becd 100644 --- a/adsingestp/parsers/copernicus.py +++ b/adsingestp/parsers/copernicus.py @@ -45,7 +45,7 @@ def _parse_pagination(self): if self.input_metadata.find("end_page"): self.base_metadata["page_last"] = self.input_metadata.find("end_page").get_text() - if self.record_meta.find("article_number"): + if self.input_metadata.find("article_number"): self.base_metadata["electronic_id"] = self.input_metadata.find( "article_number" ).get_text() @@ -187,6 +187,7 @@ def parse(self, text): self._parse_title() self._parse_author() self._parse_pubdate() + self._parse_pagination() self._parse_abstract() self._parse_references() self._parse_esources() diff --git a/tests/stubdata/input/copernicus_wes-8-1625-2023.xml b/tests/stubdata/input/copernicus_wes-8-1625-2023.xml new file mode 100644 index 0000000..eb7a42f --- /dev/null +++ b/tests/stubdata/input/copernicus_wes-8-1625-2023.xml @@ -0,0 +1,100 @@ + + +
+ + Wind Energy Science + https://wes.copernicus.org/articles/ + 2366-7443 + 2366-7451 + 8 + 10 + 2023 + + 10.5194/wes-8-1625-2023 + https://wes.copernicus.org/articles/8/1625/2023/ + https://wes.copernicus.org/articles/8/1625/2023/wes-8-1625-2023.html + https://wes.copernicus.org/articles/8/1625/2023/wes-8-1625-2023.pdf + 83 + 1625 + 1638 + 2023-10-27 + Forced-motion simulations of vortex-induced vibrations of wind turbine blades – a study of sensitivities + + + Christian Grinderslev + cgrinde@dtu.dk + 0000-0003-3095-9733 + + + Felix Houtin-Mongrolle + felix.houtin.ext@siemensgamesa.com + + + Niels Nørmark Sørensen + nsqr@dtu.dk + + + Georg Raimund Pirrung + gepir@dtu.dk + 0000-0001-9260-1791 + + + Pim Jacobs + pim.jacobs.ext@siemensgamesa.com + + + Aqeel Ahmed + aqeel.ahmed@siemensgamesa.com + 0000-0001-5371-9834 + + + Bastien Duboc + bastien.duboc@siemensgamesa.com + + + + Department of Wind and Energy Systems, Technical University of Denmark, 2800, Kongens Lyngby, Denmark + Siemens Gamesa Renewable Energy, Prinses Beatrixlaan 800, 2595BN The Hague, the Netherlands + Department of Wind and Energy Systems, Technical University of Denmark, Risø Campus, 4000, Roskilde, Denmark + Siemens Gamesa Renewable Energy, 685 Avenue de l'Université, Saint-Étienne-du-Rouvray, 76801, France + + <p>Vortex-induced vibrations on wind turbine blades are a complex phenomenon not predictable by standard engineering models. For this reason, higher-fidelity computational fluid dynamics (CFD) methods are needed. However, the term CFD covers a broad range of fidelities, and this study investigates which choices have to be made when wanting to capture the vortex-induced vibration (VIV) phenomenon to a satisfying degree. The method studied is the so-called forced-motion (FM) approach, where the structural motion is imposed on the CFD blade surface through mode shape assumptions rather than fully coupled two-way fluid–structure interaction. In the study, two independent CFD solvers, EllipSys3D and Ansys CFX, are used and five different turbulence models of varying fidelities are tested. Varying flow scenarios are studied with low to high inclination angles, which determine the component of the flow in the spanwise direction. In all scenarios, the cross-sectional component of the flow is close to perpendicular to the chord of the blade. It is found that the low-inclination-angle and high-inclination-angle scenarios, despite having a difference equivalent to up to only a 30<span class="inline-formula"><sup>∘</sup></span> azimuth, have quite different requirements of both grid resolution and turbulence models. For high inclination angles, where the flow has a large spanwise component from the tip towards the root, satisfying results are found from quite affordable grid sizes, and even with unsteady Reynolds-averaged Navier–Stokes (URANS) <span class="inline-formula"><i>k</i></span>–<span class="inline-formula"><i>ω</i></span> turbulence, the result is quite consistent with models resolving more of the turbulent scales. For low inclination, which has a high degree of natural vortex shedding, the picture is the opposite. Here, even for scale-resolving turbulence models, a much finer grid resolution is needed. This allows us to capture the many incoherent vortices, which have a large impact on the coherent vortices, which in turn inject power into the blade or extract power.</p> + + <p>It is found that a good consistency is seen using different variations of the higher-fidelity hybrid RANS–large eddy simulation (LES) turbulence models, like improved delayed detached eddy simulation (IDDES), stress-blended eddy simulation (SBES) and <span class="inline-formula"><i>k</i></span>–<span class="inline-formula"><i>ω</i></span> scale-adaptive simulation (SAS) models, which agree well for various flow conditions and imposed amplitudes.</p> + + <p>This study shows that extensive care and consideration are needed when modeling 3D VIVs using CFD, as the flow phenomena, and thereby solver requirements, rapidly change for different scenarios.</p> + + Bortolotti, P., Canet Tarrés, H., Dykes, K., Merz, K., Sethuraman, L., Verelst, D., and Zahle, F.: Systems Engineering in Wind Energy – WP2.1 Reference Wind Turbines, Tech. rep., National Renewable Energy Laboratory (NREL), <a href="https://www.osti.gov/biblio/1529216-iea-wind-tcp-task-systems-engineering-wind-energy-wp2-reference-wind-turbines">https://www.osti.gov/biblio/1529216-iea-wind-tcp-task-systems-engineering-wind-energy-wp2-reference-wind-turbines</a> (last access: 24 October 2023), 2019. <a href="#xref_paren.10">a</a>, <a href="#xref_text.14">b</a> + CFX, A.: Modeling guide, Release 21R2, <span class="uri">https://dl.cfdexperts.net/cfd_resources/Ansys_Documentation/CFX/Ansys_CFX-Solver_Modeling_Guide.pdf</span> (last access: 24 October 2023), 2021. <a href="#xref_altparen.9">a</a>, <a href="#xref_paren.25">b</a> + CFX-Solver, A.: Theory guide, Release 21R2, <span class="uri">https://dl.cfdexperts.net/cfd_resources/Ansys_Documentation/CFX/Ansys_CFX-Solver_Theory_Guide.pdf</span> (last access: 24 October 2023), 2021. <a href="#xref_paren.26">a</a> + DTU Computing Center: DTU Computing Center resources, <a href="https://doi.org/10.48714/DTU.HPC.0001">https://doi.org/10.48714/DTU.HPC.0001</a>, 2021.  <a href="#xref_paren.46">a</a> + Egorov, Y., Menter, F., Lechner, R., and Cokljat, D.: The scale-adaptive simulation method for unsteady turbulent flow predictions. part 2: Application to complex flows, Flow, Turbulence and Combustion, 85, 139–165, <a href="https://doi.org/10.1007/s10494-010-9265-4">https://doi.org/10.1007/s10494-010-9265-4</a>, 2010. <a href="#xref_paren.29">a</a>, <a href="#xref_paren.35">b</a> + Grinderslev, C., Nørmark Sørensen, N., Raimund Pirrung, G., and González Horcas, S.: Multiple limit cycle amplitudes in high-fidelity predictions of standstill wind turbine blade vibrations, Wind Energ. Sci., 7, 2201–2213, <a href="https://doi.org/10.5194/wes-7-2201-2022">https://doi.org/10.5194/wes-7-2201-2022</a>, 2022. <a href="#xref_text.4">a</a>, <a href="#xref_text.12">b</a>, <a href="#xref_paren.13">c</a>, <a href="#xref_text.16">d</a>, <a href="#xref_paren.24">e</a>, <a href="#xref_text.38">f</a>, <a href="#xref_paren.40">g</a> + Gritskevich, M. S., Garbaruk, A. V., Schütze, J., and Menter, F. R.: Development of DDES and IDDES formulations for the k-<span class="inline-formula"><i>ω</i></span> shear stress transport model, Flow, Turbulence and Combustion, 88, 431–449, <a href="https://doi.org/10.1007/s10494-011-9378-4">https://doi.org/10.1007/s10494-011-9378-4</a>, 2012. <a href="#xref_paren.20">a</a>, <a href="#xref_paren.34">b</a> + Hansen, M. H.: Aeroelastic stability analysis of wind turbines using an eigenvalue approach, Wind Energy, 7, 133–143, <a href="https://doi.org/10.1002/we.116">https://doi.org/10.1002/we.116</a>, 2004. <a href="#xref_paren.15">a</a>, <a href="#xref_paren.39">b</a> + Heinz, J., Sørensen, N., and Zahle, F.: Fluid-structure interaction computations for geometrically resolved rotor simulations using CFD, Wind Energy, 19, 2205–2221, 2016. <a href="#xref_text.41">a</a> + Horcas, S. G., Barlas, T., Zahle, F., and Sørensen, N.: Vortex induced vibrations of wind turbine blades: Influence of the tip geometry, Phys. Fluids, 32, 065104, <a href="https://doi.org/10.1063/5.0004005">https://doi.org/10.1063/5.0004005</a>, 2020. <a href="#xref_text.1">a</a>, <a href="#xref_text.3">b</a>, <a href="#xref_text.5">c</a>, <a href="#xref_paren.24">d</a> + Horcas, S. G., Madsen, M., Sørensen, N.N. Zahle, F., and Barlas, T.: Influence of the installation of a trailing edge flap on the vortex induced vibrations of a wind turbine blade, J. Wind. Eng. Ind. Aerod., 229, 105118, <a href="https://doi.org/10.1016/j.jweia.2022.105118">https://doi.org/10.1016/j.jweia.2022.105118</a>, 2022a. <a href="#xref_text.1">a</a>, <a href="#xref_text.3">b</a>, <a href="#xref_text.5">c</a> + Horcas, S. G., Sørensen, N., Zahle, F., Pirrung, G. R., and Barlas, T.: Vibrations of wind turbine blades in standstill: Mapping the influence of the inflow angles, Phys. Fluids, 34, 054105, <a href="https://doi.org/10.1063/5.0088036">https://doi.org/10.1063/5.0088036</a>, 2022b. <a href="#xref_text.1">a</a>, <a href="#xref_text.2">b</a>, <a href="#xref_text.11">c</a>, <a href="#xref_paren.13">d</a>, <a href="#xref_paren.17">e</a>, <a href="#xref_paren.24">f</a>, <a href="#xref_text.42">g</a>, <a href="#xref_text.43">h</a>, <a href="#xref_text.44">i</a> + Hu, P., Sun, C., Zhu, X., and Du, Z.: Investigations on vortex-induced vibration of a wind turbine airfoil at a high angle of attack via modal analysis, J. Renew. Sustain. Ener., 13, 033306, <a href="https://doi.org/10.1063/5.0040509">https://doi.org/10.1063/5.0040509</a>, 2021. <a href="#xref_paren.7">a</a> + IEA Wind Task 37: IEA-10.0-198-RWT, GitHub [code], <span class="uri">https://github.com/IEAWindTask37/IEA-10.0-198-RWT</span> (last access: 26 October 2023), 2023. <a href="#xref_paren.45">a</a> + Jasak, H., Weller, H., and Gosman, A.: High resolution NVD differencing scheme for arbitrarily unstructured meshes, Int. J. Numer. Meth. Fl., 31, 431–449, 1999. <a href="#xref_paren.32">a</a> + Leonard, B.: The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection, Comput. Method. Appl. M., 88, 17–74, 1991. <a href="#xref_paren.31">a</a> + Menter, F.: Zonal Two Equation Kappa–Omega Turbulence Models for Aerodynamic Flows, in: 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, 6–9 July 1993, Orlando, FL, USA, <a href="https://doi.org/10.2514/6.1993-2906">https://doi.org/10.2514/6.1993-2906</a>, 1993. <a href="#xref_paren.19">a</a>, <a href="#xref_paren.28">b</a>, <a href="#xref_paren.33">c</a> + Menter, F.: Stress-Blended Eddy Simulation (SBES) – A New Paradigm in Hybrid RANS-LES Modeling, in: Progress in Hybrid RANS-LES Modelling, edited by: Hoarau, Y., Peng, S.-H., Schwamborn, D., and Revell, A., 27–37, Springer International Publishing, Cham, <a href="https://doi.org/10.1007/978-3-319-70031-1_3">https://doi.org/10.1007/978-3-319-70031-1_3</a>, 2018.  <a href="#xref_paren.30">a</a>, <a href="#xref_paren.36">b</a> + Menter, F., Kuntz, M., and Langtry, R.: Ten Years of Industrial Experience with the SST Turbulence Model, in: Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer, Begell House Inc., West Redding, 625–632, 2003. <a href="#xref_paren.34">a</a> + Michelsen, J.: Basis3D – A Platform for Development of Multiblock PDE Solvers., Tech. rep., Risø National Laboratory, <span class="uri">https://backend.orbit.dtu.dk/ws/portalfiles/portal/272917945/Michelsen_J_Basis3D.pdf</span> (last access: 24 October 2023), 1992. <a href="#xref_paren.8">a</a>, <a href="#xref_paren.18">b</a> + Michelsen, J.: Block Structured Multigrid Solution of 2D and 3D Elliptic PDE's., Tech. rep., Technical University of Denmark, 1994. <a href="#xref_paren.18">a</a> + Paz, M.: Structural dynamics: theory and computation, Springer Science &amp; Business Media, <a href="https://doi.org/10.1007/978-3-319-94743-3">https://doi.org/10.1007/978-3-319-94743-3</a>, 2012. <a href="#xref_text.37">a</a> + Placzek, A., Sigrist, J. F., and Hamdouni, A.: Numerical simulation of an oscillating cylinder in a cross-flow at low Reynolds number: Forced and free oscillations, Computers and Fluids, 38, 80–100, <a href="https://doi.org/10.1016/j.compfluid.2008.01.007">https://doi.org/10.1016/j.compfluid.2008.01.007</a>, 2009. <a href="#xref_paren.6">a</a> + Raw, M.: Robustness of coupled algebraic multigrid for the Navier-Stokes equations, in: 34th Aerospace sciences meeting and exhibit, American Institute of Aeronautics and Astronautics, p. 297, <a href="https://doi.org/10.2514/6.1996-297">https://doi.org/10.2514/6.1996-297</a>, 1996. <a href="#xref_paren.27">a</a> + Riva, R., Horcas, S. G., Sørensen, N. N., Grinderslev, C., and Pirrung, G. R.: Stability analysis of vortex-induced vibrations on wind turbines, J. Phys. Conf. Ser., 2265, 042054, <a href="https://doi.org/10.1088/1742-6596/2265/4/042054">https://doi.org/10.1088/1742-6596/2265/4/042054</a>, 2022. <a href="#xref_paren.17">a</a> + Shur, M. L., Spalart, P. R., Strelets, M. K., and Travin, A. K.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities, Int. J. Heat Fluid Fl., 29, 1638–1649, <a href="https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001">https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001</a>, 2008. <a href="#xref_paren.34">a</a> + Skrzypiński, W., Gaunaa, M., Sørensen, N., Zahle, F., and Heinz, J.: Vortex-induced vibrations of a DU96-W-180 airfoil at 90<span class="inline-formula"><sup>∘</sup></span> angle of attack, Wind Energy, 17, 1495–1514, <a href="https://doi.org/10.1002/we.1647">https://doi.org/10.1002/we.1647</a>, 2014. <a href="#xref_paren.7">a</a> + Strelets, M.: Detached eddy simulation of massively separated flows, 39th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, <a href="https://doi.org/10.2514/6.2001-879">https://doi.org/10.2514/6.2001-879</a>, 2001. <a href="#xref_text.21">a</a> + Sørensen, N.: General purpose flow solver applied to flow over hills, PhD thesis, Risø National Laboratory, <span class="uri">https://backend.orbit.dtu.dk/ws/portalfiles/portal/12280331/Ris_R_827.pdf</span> (last access: 24 October 2023), 1995. <a href="#xref_paren.8">a</a>, <a href="#xref_paren.18">b</a> + Sørensen, N.: HypGrid2D. A 2-d mesh generator, Tech. rep., Risø National Laboratory, ISBN 87-550-2368-1, <span class="uri">https://backend.orbit.dtu.dk/ws/portalfiles/portal/7750949/RIS_R_1035.pdf</span> (last access: 24 October 2023), 1998. <a href="#xref_paren.23">a</a> + Viré, A., Derksen, A., Folkersma, M., and Sarwar, K.: Two-dimensional numerical simulations of vortex-induced vibrations for a cylinder in conditions representative of wind turbine towers, Wind Energ. Sci., 5, 793–806, <a href="https://doi.org/10.5194/wes-5-793-2020">https://doi.org/10.5194/wes-5-793-2020</a>, 2020. <a href="#xref_paren.6">a</a> + Zahle, F.: PGL – Parametric Geometry Library, <span class="uri">https://gitlab.windenergy.dtu.dk/frza/PGL</span> (last access: 24 October 2023), 2022. <a href="#xref_paren.22">a</a> + +
diff --git a/tests/stubdata/output/Copernicus_ESSD_essd-15-3075-2023.json b/tests/stubdata/output/Copernicus_ESSD_essd-15-3075-2023.json index 6d570ae..e1c2e0e 100644 --- a/tests/stubdata/output/Copernicus_ESSD_essd-15-3075-2023.json +++ b/tests/stubdata/output/Copernicus_ESSD_essd-15-3075-2023.json @@ -26,6 +26,11 @@ } ] }, + "pagination": { + "electronicID": "145", + "firstPage": "3075", + "lastPage": "3094" + }, "persistentIDs": [ { "DOI": "10.5194/essd-15-3075-2023" diff --git a/tests/stubdata/output/Copernicus_GeChr_gchron-5-323-2023.json b/tests/stubdata/output/Copernicus_GeChr_gchron-5-323-2023.json index a2de3cc..26bc0d9 100644 --- a/tests/stubdata/output/Copernicus_GeChr_gchron-5-323-2023.json +++ b/tests/stubdata/output/Copernicus_GeChr_gchron-5-323-2023.json @@ -31,6 +31,11 @@ "DOI": "10.5194/gchron-5-323-2023" } ], + "pagination": { + "electronicID": "18", + "firstPage": "323", + "lastPage": "332" + }, "authors": [ { "name": { diff --git a/tests/stubdata/output/Copernicus_ISPAn_isprs-annals-X-M-1-2023-237-2023.json b/tests/stubdata/output/Copernicus_ISPAn_isprs-annals-X-M-1-2023-237-2023.json index 0232b6e..913df5e 100644 --- a/tests/stubdata/output/Copernicus_ISPAn_isprs-annals-X-M-1-2023-237-2023.json +++ b/tests/stubdata/output/Copernicus_ISPAn_isprs-annals-X-M-1-2023-237-2023.json @@ -26,6 +26,10 @@ } ] }, + "pagination": { + "firstPage": "237", + "lastPage": "244" + }, "persistentIDs": [ { "DOI": "10.5194/isprs-annals-X-M-1-2023-237-2023" diff --git a/tests/stubdata/output/Copernicus_ISPAr_isprs-archives-XLVIII-M-2-2023-721-2023.json b/tests/stubdata/output/Copernicus_ISPAr_isprs-archives-XLVIII-M-2-2023-721-2023.json index 67e7d39..0b5c450 100644 --- a/tests/stubdata/output/Copernicus_ISPAr_isprs-archives-XLVIII-M-2-2023-721-2023.json +++ b/tests/stubdata/output/Copernicus_ISPAr_isprs-archives-XLVIII-M-2-2023-721-2023.json @@ -26,6 +26,10 @@ } ] }, + "pagination": { + "firstPage": "721", + "lastPage": "727" + }, "persistentIDs": [ { "DOI": "10.5194/isprs-archives-XLVIII-M-2-2023-721-2023" diff --git a/tests/stubdata/output/copernicus_ESSD_essd-15-3075-2023.json b/tests/stubdata/output/copernicus_ESSD_essd-15-3075-2023.json index 6d570ae..e1c2e0e 100644 --- a/tests/stubdata/output/copernicus_ESSD_essd-15-3075-2023.json +++ b/tests/stubdata/output/copernicus_ESSD_essd-15-3075-2023.json @@ -26,6 +26,11 @@ } ] }, + "pagination": { + "electronicID": "145", + "firstPage": "3075", + "lastPage": "3094" + }, "persistentIDs": [ { "DOI": "10.5194/essd-15-3075-2023" diff --git a/tests/stubdata/output/copernicus_GeChr_gchron-5-323-2023.json b/tests/stubdata/output/copernicus_GeChr_gchron-5-323-2023.json index a2de3cc..26bc0d9 100644 --- a/tests/stubdata/output/copernicus_GeChr_gchron-5-323-2023.json +++ b/tests/stubdata/output/copernicus_GeChr_gchron-5-323-2023.json @@ -31,6 +31,11 @@ "DOI": "10.5194/gchron-5-323-2023" } ], + "pagination": { + "electronicID": "18", + "firstPage": "323", + "lastPage": "332" + }, "authors": [ { "name": { diff --git a/tests/stubdata/output/copernicus_ISPAn_isprs-annals-X-M-1-2023-237-2023.json b/tests/stubdata/output/copernicus_ISPAn_isprs-annals-X-M-1-2023-237-2023.json index 0232b6e..913df5e 100644 --- a/tests/stubdata/output/copernicus_ISPAn_isprs-annals-X-M-1-2023-237-2023.json +++ b/tests/stubdata/output/copernicus_ISPAn_isprs-annals-X-M-1-2023-237-2023.json @@ -26,6 +26,10 @@ } ] }, + "pagination": { + "firstPage": "237", + "lastPage": "244" + }, "persistentIDs": [ { "DOI": "10.5194/isprs-annals-X-M-1-2023-237-2023" diff --git a/tests/stubdata/output/copernicus_ISPAr_isprs-archives-XLVIII-M-2-2023-721-2023.json b/tests/stubdata/output/copernicus_ISPAr_isprs-archives-XLVIII-M-2-2023-721-2023.json index 67e7d39..0b5c450 100644 --- a/tests/stubdata/output/copernicus_ISPAr_isprs-archives-XLVIII-M-2-2023-721-2023.json +++ b/tests/stubdata/output/copernicus_ISPAr_isprs-archives-XLVIII-M-2-2023-721-2023.json @@ -26,6 +26,10 @@ } ] }, + "pagination": { + "firstPage": "721", + "lastPage": "727" + }, "persistentIDs": [ { "DOI": "10.5194/isprs-archives-XLVIII-M-2-2023-721-2023" diff --git a/tests/stubdata/output/copernicus_wes-8-1625-2023.json b/tests/stubdata/output/copernicus_wes-8-1625-2023.json new file mode 100644 index 0000000..2a50d9d --- /dev/null +++ b/tests/stubdata/output/copernicus_wes-8-1625-2023.json @@ -0,0 +1,199 @@ +{ + "abstract": { + "textEnglish": "Vortex-induced vibrations on wind turbine blades are a complex phenomenon not predictable by standard engineering models. For this reason, higher-fidelity computational fluid dynamics (CFD) methods are needed. However, the term CFD covers a broad range of fidelities, and this study investigates which choices have to be made when wanting to capture the vortex-induced vibration (VIV) phenomenon to a satisfying degree. The method studied is the so-called forced-motion (FM) approach, where the structural motion is imposed on the CFD blade surface through mode shape assumptions rather than fully coupled two-way fluid\u2013structure interaction. In the study, two independent CFD solvers, EllipSys3D and Ansys CFX, are used and five different turbulence models of varying fidelities are tested. Varying flow scenarios are studied with low to high inclination angles, which determine the component of the flow in the spanwise direction. In all scenarios, the cross-sectional component of the flow is close to perpendicular to the chord of the blade. It is found that the low-inclination-angle and high-inclination-angle scenarios, despite having a difference equivalent to up to only a 30\u2218 azimuth, have quite different requirements of both grid resolution and turbulence models. For high inclination angles, where the flow has a large spanwise component from the tip towards the root, satisfying results are found from quite affordable grid sizes, and even with unsteady Reynolds-averaged Navier\u2013Stokes (URANS) k\u2013\u03c9 turbulence, the result is quite consistent with models resolving more of the turbulent scales. For low inclination, which has a high degree of natural vortex shedding, the picture is the opposite. Here, even for scale-resolving turbulence models, a much finer grid resolution is needed. This allows us to capture the many incoherent vortices, which have a large impact on the coherent vortices, which in turn inject power into the blade or extract power. It is found that a good consistency is seen using different variations of the higher-fidelity hybrid RANS\u2013large eddy simulation (LES) turbulence models, like improved delayed detached eddy simulation (IDDES), stress-blended eddy simulation (SBES) and k\u2013\u03c9 scale-adaptive simulation (SAS) models, which agree well for various flow conditions and imposed amplitudes. This study shows that extensive care and consideration are needed when modeling 3D VIVs using CFD, as the flow phenomena, and thereby solver requirements, rapidly change for different scenarios." + }, + "authors": [ + { + "affiliation": [ + { + "affPubRaw": "Department of Wind and Energy Systems, Technical University of Denmark, 2800, Kongens Lyngby, Denmark" + } + ], + "attrib": { + "email": "cgrinde@dtu.dk", + "orcid": "0000-0003-3095-9733" + }, + "name": { + "given_name": "Christian", + "pubraw": "Christian Grinderslev", + "surname": "Grinderslev" + } + }, + { + "affiliation": [ + { + "affPubRaw": "Siemens Gamesa Renewable Energy, Prinses Beatrixlaan 800, 2595BN The Hague, the Netherlands" + } + ], + "attrib": { + "email": "felix.houtin.ext@siemensgamesa.com" + }, + "name": { + "given_name": "Felix", + "pubraw": "Felix Houtin-Mongrolle", + "surname": "Houtin-Mongrolle" + } + }, + { + "affiliation": [ + { + "affPubRaw": "Department of Wind and Energy Systems, Technical University of Denmark, Ris\u00f8 Campus, 4000, Roskilde, Denmark" + } + ], + "attrib": { + "email": "nsqr@dtu.dk" + }, + "name": { + "given_name": "Niels", + "pubraw": "Niels N\u00f8rmark S\u00f8rensen", + "surname": "N\u00f8rmark S\u00f8rensen" + } + }, + { + "affiliation": [ + { + "affPubRaw": "Department of Wind and Energy Systems, Technical University of Denmark, Ris\u00f8 Campus, 4000, Roskilde, Denmark" + } + ], + "attrib": { + "email": "gepir@dtu.dk", + "orcid": "0000-0001-9260-1791" + }, + "name": { + "given_name": "Georg", + "pubraw": "Georg Raimund Pirrung", + "surname": "Raimund Pirrung" + } + }, + { + "affiliation": [ + { + "affPubRaw": "Siemens Gamesa Renewable Energy, Prinses Beatrixlaan 800, 2595BN The Hague, the Netherlands" + } + ], + "attrib": { + "email": "pim.jacobs.ext@siemensgamesa.com" + }, + "name": { + "given_name": "Pim", + "pubraw": "Pim Jacobs", + "surname": "Jacobs" + } + }, + { + "affiliation": [ + { + "affPubRaw": "Siemens Gamesa Renewable Energy, 685 Avenue de l'Universit\u00e9, Saint-\u00c9tienne-du-Rouvray, 76801, France" + } + ], + "attrib": { + "email": "aqeel.ahmed@siemensgamesa.com", + "orcid": "0000-0001-5371-9834" + }, + "name": { + "given_name": "Aqeel", + "pubraw": "Aqeel Ahmed", + "surname": "Ahmed" + } + }, + { + "affiliation": [ + { + "affPubRaw": "Siemens Gamesa Renewable Energy, 685 Avenue de l'Universit\u00e9, Saint-\u00c9tienne-du-Rouvray, 76801, France" + } + ], + "attrib": { + "email": "bastien.duboc@siemensgamesa.com" + }, + "name": { + "given_name": "Bastien", + "pubraw": "Bastien Duboc", + "surname": "Duboc" + } + } + ], + "esources": [ + { + "location": "https://wes.copernicus.org/articles/8/1625/2023/wes-8-1625-2023.pdf", + "source": "pub_pdf" + }, + { + "location": "https://wes.copernicus.org/articles/8/1625/2023/wes-8-1625-2023.html", + "source": "pub_html" + } + ], + "pagination": { + "electronicID": "83", + "firstPage": "1625", + "lastPage": "1638" + }, + "persistentIDs": [ + { + "DOI": "10.5194/wes-8-1625-2023" + } + ], + "pubDate": { + "electrDate": "2023-10-27", + "printDate": "2023-10-27" + }, + "publication": { + "ISSN": [ + { + "issnString": "2366-7443", + "pubtype": "print" + }, + { + "issnString": "2366-7443", + "pubtype": "electronic" + } + ], + "pubName": "Wind Energy Science", + "pubYear": "2023", + "volumeNum": "8" + }, + "recordData": { + "createdTime": "", + "loadFormat": "OtherXML", + "loadLocation": "", + "loadType": "fromFile", + "parsedTime": "", + "recordOrigin": "" + }, + "references": [ + "Bortolotti, P., Canet Tarr\u00e9s, H., Dykes, K., Merz, K., Sethuraman, L., Verelst, D., and Zahle, F.: Systems Engineering in Wind Energy \u2013 WP2.1 Reference Wind Turbines, Tech. rep., National Renewable Energy Laboratory (NREL), https://www.osti.gov/biblio/1529216-iea-wind-tcp-task-systems-engineering-wind-energy-wp2-reference-wind-turbines (last access: 24\u00a0October\u00a02023), 2019.\u2002a, b", + "CFX, A.: Modeling guide, Release 21R2, https://dl.cfdexperts.net/cfd_resources/Ansys_Documentation/CFX/Ansys_CFX-Solver_Modeling_Guide.pdf (last access: 24\u00a0October\u00a02023), 2021.\u2002a, b", + "CFX-Solver, A.: Theory guide, Release 21R2, https://dl.cfdexperts.net/cfd_resources/Ansys_Documentation/CFX/Ansys_CFX-Solver_Theory_Guide.pdf (last access: 24\u00a0October\u00a02023), 2021.\u2002a", + "DTU Computing Center: DTU Computing Center resources, https://doi.org/10.48714/DTU.HPC.0001, 2021. \u2002a", + "Egorov, Y., Menter, F., Lechner, R., and Cokljat, D.: The scale-adaptive simulation method for unsteady turbulent flow predictions. part 2: Application to complex flows, Flow, Turbulence and Combustion, 85, 139\u2013165, https://doi.org/10.1007/s10494-010-9265-4, 2010.\u2002a, b", + "Grinderslev, C., N\u00f8rmark S\u00f8rensen, N., Raimund Pirrung, G., and Gonz\u00e1lez Horcas, S.: Multiple limit cycle amplitudes in high-fidelity predictions of standstill wind turbine blade vibrations, Wind Energ. Sci., 7, 2201\u20132213, https://doi.org/10.5194/wes-7-2201-2022, 2022.\u2002a, b, c, d, e, f, g", + "Gritskevich, M.\u00a0S., Garbaruk, A.\u00a0V., Sch\u00fctze, J., and Menter, F.\u00a0R.: Development of DDES and IDDES formulations for the k-\u03c9 shear stress transport model, Flow, Turbulence and Combustion, 88, 431\u2013449, https://doi.org/10.1007/s10494-011-9378-4, 2012.\u2002a, b", + "Hansen, M.\u00a0H.: Aeroelastic stability analysis of wind turbines using an eigenvalue approach, Wind Energy, 7, 133\u2013143, https://doi.org/10.1002/we.116, 2004.\u2002a, b", + "Heinz, J., S\u00f8rensen, N., and Zahle, F.: Fluid-structure interaction computations for geometrically resolved rotor simulations using CFD, Wind Energy, 19, 2205\u20132221, 2016.\u2002a", + "Horcas, S.\u00a0G., Barlas, T., Zahle, F., and S\u00f8rensen, N.: Vortex induced vibrations of wind turbine blades: Influence of the tip geometry, Phys. Fluids, 32, 065104, https://doi.org/10.1063/5.0004005, 2020.\u2002a, b, c, d", + "Horcas, S.\u00a0G., Madsen, M., S\u00f8rensen, N.N.\u00a0Zahle, F., and Barlas, T.: Influence of the installation of a trailing edge flap on the vortex induced vibrations of a wind turbine blade, J. Wind. Eng. Ind. Aerod., 229, 105118, https://doi.org/10.1016/j.jweia.2022.105118, 2022a.\u2002a, b, c", + "Horcas, S.\u00a0G., S\u00f8rensen, N., Zahle, F., Pirrung, G.\u00a0R., and Barlas, T.: Vibrations of wind turbine blades in standstill: Mapping the influence of the inflow angles, Phys. Fluids, 34, 054105, https://doi.org/10.1063/5.0088036, 2022b.\u2002a, b, c, d, e, f, g, h, i", + "Hu, P., Sun, C., Zhu, X., and Du, Z.: Investigations on vortex-induced vibration of a wind turbine airfoil at a high angle of attack via modal analysis, J. Renew. Sustain. Ener., 13, 033306, https://doi.org/10.1063/5.0040509, 2021.\u2002a", + "IEA\u00a0Wind\u00a0Task\u00a037: IEA-10.0-198-RWT, GitHub [code], https://github.com/IEAWindTask37/IEA-10.0-198-RWT (last access: 26\u00a0October\u00a02023), 2023.\u2002a", + "Jasak, H., Weller, H., and Gosman, A.: High resolution NVD differencing scheme for arbitrarily unstructured meshes, Int. J. Numer. Meth. Fl., 31, 431\u2013449, 1999.\u2002a", + "Leonard, B.: The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection, Comput. Method. Appl. M., 88, 17\u201374, 1991.\u2002a", + "Menter, F.: Zonal Two Equation Kappa\u2013Omega Turbulence Models for Aerodynamic Flows, in: 23rd\u00a0Fluid Dynamics, Plasmadynamics, and Lasers Conference, 6\u20139\u00a0July\u00a01993, Orlando, FL, USA, https://doi.org/10.2514/6.1993-2906, 1993.\u2002a, b, c", + "Menter, F.: Stress-Blended Eddy Simulation (SBES) \u2013 A New Paradigm in Hybrid RANS-LES Modeling, in: Progress in Hybrid RANS-LES Modelling, edited by: Hoarau, Y., Peng, S.-H., Schwamborn, D., and Revell, A., 27\u201337, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-70031-1_3, 2018. \u2002a, b", + "Menter, F., Kuntz, M., and Langtry, R.: Ten Years of Industrial Experience with the SST Turbulence Model, in: Proceedings of the 4th\u00a0International Symposium on Turbulence, Heat and Mass Transfer, Begell House Inc., West Redding, 625\u2013632, 2003.\u2002a", + "Michelsen, J.: Basis3D \u2013 A Platform for Development of Multiblock PDE Solvers., Tech. rep., Ris\u00f8 National Laboratory, https://backend.orbit.dtu.dk/ws/portalfiles/portal/272917945/Michelsen_J_Basis3D.pdf (last access: 24\u00a0October\u00a02023), 1992.\u2002a, b", + "Michelsen, J.: Block Structured Multigrid Solution of 2D and 3D Elliptic PDE's., Tech. rep., Technical University of Denmark, 1994.\u2002a", + "Paz, M.: Structural dynamics: theory and computation, Springer Science & Business Media, https://doi.org/10.1007/978-3-319-94743-3, 2012.\u2002a", + "Placzek, A., Sigrist, J.\u00a0F., and Hamdouni, A.: Numerical simulation of an oscillating cylinder in a cross-flow at low Reynolds number: Forced and free oscillations, Computers and Fluids, 38, 80\u2013100, https://doi.org/10.1016/j.compfluid.2008.01.007, 2009.\u2002a", + "Raw, M.: Robustness of coupled algebraic multigrid for the Navier-Stokes equations, in: 34th Aerospace sciences meeting and exhibit, American Institute of Aeronautics and Astronautics, p.\u00a0297, https://doi.org/10.2514/6.1996-297, 1996.\u2002a", + "Riva, R., Horcas, S.\u00a0G., S\u00f8rensen, N.\u00a0N., Grinderslev, C., and Pirrung, G.\u00a0R.: Stability analysis of vortex-induced vibrations on wind turbines, J. Phys. Conf. Ser., 2265, 042054, https://doi.org/10.1088/1742-6596/2265/4/042054, 2022.\u2002a", + "Shur, M.\u00a0L., Spalart, P.\u00a0R., Strelets, M.\u00a0K., and Travin, A.\u00a0K.: A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities, Int. J. Heat Fluid Fl., 29, 1638\u20131649, https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001, 2008.\u2002a", + "Skrzypi\u0144ski, W., Gaunaa, M., S\u00f8rensen, N., Zahle, F., and Heinz, J.: Vortex-induced vibrations of a DU96-W-180 airfoil at 90\u2218 angle of attack, Wind Energy, 17, 1495\u20131514, https://doi.org/10.1002/we.1647, 2014.\u2002a", + "Strelets, M.: Detached eddy simulation of massively separated flows, 39th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, https://doi.org/10.2514/6.2001-879, 2001.\u2002a", + "S\u00f8rensen, N.: General purpose flow solver applied to flow over hills, PhD\u00a0thesis, Ris\u00f8 National Laboratory, https://backend.orbit.dtu.dk/ws/portalfiles/portal/12280331/Ris_R_827.pdf (last access: 24\u00a0October\u00a02023), 1995.\u2002a, b", + "S\u00f8rensen, N.: HypGrid2D. A 2-d mesh generator, Tech. rep., Ris\u00f8 National Laboratory, ISBN\u00a087-550-2368-1, https://backend.orbit.dtu.dk/ws/portalfiles/portal/7750949/RIS_R_1035.pdf (last access: 24\u00a0October\u00a02023), 1998.\u2002a", + "Vir\u00e9, A., Derksen, A., Folkersma, M., and Sarwar, K.: Two-dimensional numerical simulations of vortex-induced vibrations for a cylinder in conditions representative of wind turbine towers, Wind Energ. Sci., 5, 793\u2013806, https://doi.org/10.5194/wes-5-793-2020, 2020.\u2002a", + "Zahle, F.: PGL \u2013 Parametric Geometry Library, https://gitlab.windenergy.dtu.dk/frza/PGL (last access: 24\u00a0October\u00a02023), 2022.\u2002a" + ], + "title": { + "textEnglish": "Forced-Motion Simulations Of Vortex-Induced Vibrations Of Wind Turbine Blades \u2013 A Study Of Sensitivities" + } +} diff --git a/tests/test_copernicus.py b/tests/test_copernicus.py index 641cc97..38249bb 100644 --- a/tests/test_copernicus.py +++ b/tests/test_copernicus.py @@ -30,6 +30,7 @@ def test_copernicus(self): "copernicus_ISPAn_isprs-annals-X-M-1-2023-237-2023", "copernicus_GeChr_gchron-5-323-2023", "copernicus_ISPAr_isprs-archives-XLVIII-M-2-2023-721-2023", + "copernicus_wes-8-1625-2023", ] for f in filenames: test_infile = os.path.join(self.inputdir, f + ".xml")