-
Notifications
You must be signed in to change notification settings - Fork 640
/
Copy pathkeras_lstm.py
175 lines (146 loc) · 6.98 KB
/
keras_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from __future__ import print_function
import collections
import os
import tensorflow as tf
from keras.models import Sequential, load_model
from keras.layers import Dense, Activation, Embedding, Dropout, TimeDistributed
from keras.layers import LSTM
from keras.optimizers import Adam
from keras.utils import to_categorical
from keras.callbacks import ModelCheckpoint
import numpy as np
import argparse
"""To run this code, you'll need to first download and extract the text dataset
from here: http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz. Change the
data_path variable below to your local exraction path"""
data_path = "C:\\Users\Andy\Documents\simple-examples\data"
parser = argparse.ArgumentParser()
parser.add_argument('run_opt', type=int, default=1, help='An integer: 1 to train, 2 to test')
parser.add_argument('--data_path', type=str, default=data_path, help='The full path of the training data')
args = parser.parse_args()
if args.data_path:
data_path = args.data_path
def read_words(filename):
with tf.gfile.GFile(filename, "r") as f:
return f.read().decode("utf-8").replace("\n", "<eos>").split()
def build_vocab(filename):
data = read_words(filename)
counter = collections.Counter(data)
count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0]))
words, _ = list(zip(*count_pairs))
word_to_id = dict(zip(words, range(len(words))))
return word_to_id
def file_to_word_ids(filename, word_to_id):
data = read_words(filename)
return [word_to_id[word] for word in data if word in word_to_id]
def load_data():
# get the data paths
train_path = os.path.join(data_path, "ptb.train.txt")
valid_path = os.path.join(data_path, "ptb.valid.txt")
test_path = os.path.join(data_path, "ptb.test.txt")
# build the complete vocabulary, then convert text data to list of integers
word_to_id = build_vocab(train_path)
train_data = file_to_word_ids(train_path, word_to_id)
valid_data = file_to_word_ids(valid_path, word_to_id)
test_data = file_to_word_ids(test_path, word_to_id)
vocabulary = len(word_to_id)
reversed_dictionary = dict(zip(word_to_id.values(), word_to_id.keys()))
print(train_data[:5])
print(word_to_id)
print(vocabulary)
print(" ".join([reversed_dictionary[x] for x in train_data[:10]]))
return train_data, valid_data, test_data, vocabulary, reversed_dictionary
train_data, valid_data, test_data, vocabulary, reversed_dictionary = load_data()
class KerasBatchGenerator(object):
def __init__(self, data, num_steps, batch_size, vocabulary, skip_step=5):
self.data = data
self.num_steps = num_steps
self.batch_size = batch_size
self.vocabulary = vocabulary
# this will track the progress of the batches sequentially through the
# data set - once the data reaches the end of the data set it will reset
# back to zero
self.current_idx = 0
# skip_step is the number of words which will be skipped before the next
# batch is skimmed from the data set
self.skip_step = skip_step
def generate(self):
x = np.zeros((self.batch_size, self.num_steps))
y = np.zeros((self.batch_size, self.num_steps, self.vocabulary))
while True:
for i in range(self.batch_size):
if self.current_idx + self.num_steps >= len(self.data):
# reset the index back to the start of the data set
self.current_idx = 0
x[i, :] = self.data[self.current_idx:self.current_idx + self.num_steps]
temp_y = self.data[self.current_idx + 1:self.current_idx + self.num_steps + 1]
# convert all of temp_y into a one hot representation
y[i, :, :] = to_categorical(temp_y, num_classes=self.vocabulary)
self.current_idx += self.skip_step
yield x, y
num_steps = 30
batch_size = 20
train_data_generator = KerasBatchGenerator(train_data, num_steps, batch_size, vocabulary,
skip_step=num_steps)
valid_data_generator = KerasBatchGenerator(valid_data, num_steps, batch_size, vocabulary,
skip_step=num_steps)
hidden_size = 500
use_dropout=True
model = Sequential()
model.add(Embedding(vocabulary, hidden_size, input_length=num_steps))
model.add(LSTM(hidden_size, return_sequences=True))
model.add(LSTM(hidden_size, return_sequences=True))
if use_dropout:
model.add(Dropout(0.5))
model.add(TimeDistributed(Dense(vocabulary)))
model.add(Activation('softmax'))
optimizer = Adam()
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['categorical_accuracy'])
print(model.summary())
checkpointer = ModelCheckpoint(filepath=data_path + '/model-{epoch:02d}.hdf5', verbose=1)
num_epochs = 50
if args.run_opt == 1:
model.fit_generator(train_data_generator.generate(), len(train_data)//(batch_size*num_steps), num_epochs,
validation_data=valid_data_generator.generate(),
validation_steps=len(valid_data)//(batch_size*num_steps), callbacks=[checkpointer])
# model.fit_generator(train_data_generator.generate(), 2000, num_epochs,
# validation_data=valid_data_generator.generate(),
# validation_steps=10)
model.save(data_path + "final_model.hdf5")
elif args.run_opt == 2:
model = load_model(data_path + "\model-40.hdf5")
dummy_iters = 40
example_training_generator = KerasBatchGenerator(train_data, num_steps, 1, vocabulary,
skip_step=1)
print("Training data:")
for i in range(dummy_iters):
dummy = next(example_training_generator.generate())
num_predict = 10
true_print_out = "Actual words: "
pred_print_out = "Predicted words: "
for i in range(num_predict):
data = next(example_training_generator.generate())
prediction = model.predict(data[0])
predict_word = np.argmax(prediction[:, num_steps-1, :])
true_print_out += reversed_dictionary[train_data[num_steps + dummy_iters + i]] + " "
pred_print_out += reversed_dictionary[predict_word] + " "
print(true_print_out)
print(pred_print_out)
# test data set
dummy_iters = 40
example_test_generator = KerasBatchGenerator(test_data, num_steps, 1, vocabulary,
skip_step=1)
print("Test data:")
for i in range(dummy_iters):
dummy = next(example_test_generator.generate())
num_predict = 10
true_print_out = "Actual words: "
pred_print_out = "Predicted words: "
for i in range(num_predict):
data = next(example_test_generator.generate())
prediction = model.predict(data[0])
predict_word = np.argmax(prediction[:, num_steps - 1, :])
true_print_out += reversed_dictionary[test_data[num_steps + dummy_iters + i]] + " "
pred_print_out += reversed_dictionary[predict_word] + " "
print(true_print_out)
print(pred_print_out)