-
Notifications
You must be signed in to change notification settings - Fork 640
/
Copy pathlstm_tutorial.py
258 lines (212 loc) · 11.1 KB
/
lstm_tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import tensorflow as tf
import numpy as np
import collections
import os
import argparse
import datetime as dt
"""To run this code, you'll need to first download and extract the text dataset
from here: http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz. Change the
data_path variable below to your local exraction path"""
data_path = "C:\\Users\Andy\Documents\simple-examples\data"
parser = argparse.ArgumentParser()
parser.add_argument('run_opt', type=int, default=1, help='An integer: 1 to train, 2 to test')
parser.add_argument('--data_path', type=str, default=data_path, help='The full path of the training data')
args = parser.parse_args()
def read_words(filename):
with tf.gfile.GFile(filename, "rb") as f:
return f.read().decode("utf-8").replace("\n", "<eos>").split()
def build_vocab(filename):
data = read_words(filename)
counter = collections.Counter(data)
count_pairs = sorted(counter.items(), key=lambda x: (-x[1], x[0]))
words, _ = list(zip(*count_pairs))
word_to_id = dict(zip(words, range(len(words))))
return word_to_id
def file_to_word_ids(filename, word_to_id):
data = read_words(filename)
return [word_to_id[word] for word in data if word in word_to_id]
def load_data():
# get the data paths
train_path = os.path.join(data_path, "ptb.train.txt")
valid_path = os.path.join(data_path, "ptb.valid.txt")
test_path = os.path.join(data_path, "ptb.test.txt")
# build the complete vocabulary, then convert text data to list of integers
word_to_id = build_vocab(train_path)
train_data = file_to_word_ids(train_path, word_to_id)
valid_data = file_to_word_ids(valid_path, word_to_id)
test_data = file_to_word_ids(test_path, word_to_id)
vocabulary = len(word_to_id)
reversed_dictionary = dict(zip(word_to_id.values(), word_to_id.keys()))
print(train_data[:5])
print(word_to_id)
print(vocabulary)
print(" ".join([reversed_dictionary[x] for x in train_data[:10]]))
return train_data, valid_data, test_data, vocabulary, reversed_dictionary
def batch_producer(raw_data, batch_size, num_steps):
raw_data = tf.convert_to_tensor(raw_data, name="raw_data", dtype=tf.int32)
data_len = tf.size(raw_data)
batch_len = data_len // batch_size
data = tf.reshape(raw_data[0: batch_size * batch_len],
[batch_size, batch_len])
epoch_size = (batch_len - 1) // num_steps
i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
x = data[:, i * num_steps:(i + 1) * num_steps]
x.set_shape([batch_size, num_steps])
y = data[:, i * num_steps + 1: (i + 1) * num_steps + 1]
y.set_shape([batch_size, num_steps])
return x, y
class Input(object):
def __init__(self, batch_size, num_steps, data):
self.batch_size = batch_size
self.num_steps = num_steps
self.epoch_size = ((len(data) // batch_size) - 1) // num_steps
self.input_data, self.targets = batch_producer(data, batch_size, num_steps)
# create the main model
class Model(object):
def __init__(self, input, is_training, hidden_size, vocab_size, num_layers,
dropout=0.5, init_scale=0.05):
self.is_training = is_training
self.input_obj = input
self.batch_size = input.batch_size
self.num_steps = input.num_steps
self.hidden_size = hidden_size
# create the word embeddings
with tf.device("/cpu:0"):
embedding = tf.Variable(tf.random_uniform([vocab_size, self.hidden_size], -init_scale, init_scale))
inputs = tf.nn.embedding_lookup(embedding, self.input_obj.input_data)
if is_training and dropout < 1:
inputs = tf.nn.dropout(inputs, dropout)
# set up the state storage / extraction
self.init_state = tf.placeholder(tf.float32, [num_layers, 2, self.batch_size, self.hidden_size])
state_per_layer_list = tf.unstack(self.init_state, axis=0)
rnn_tuple_state = tuple(
[tf.contrib.rnn.LSTMStateTuple(state_per_layer_list[idx][0], state_per_layer_list[idx][1])
for idx in range(num_layers)]
)
# create an LSTM cell to be unrolled
cell = tf.contrib.rnn.LSTMCell(hidden_size, forget_bias=1.0)
# add a dropout wrapper if training
if is_training and dropout < 1:
cell = tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=dropout)
if num_layers > 1:
cell = tf.contrib.rnn.MultiRNNCell([cell for _ in range(num_layers)], state_is_tuple=True)
output, self.state = tf.nn.dynamic_rnn(cell, inputs, dtype=tf.float32, initial_state=rnn_tuple_state)
# reshape to (batch_size * num_steps, hidden_size)
output = tf.reshape(output, [-1, hidden_size])
softmax_w = tf.Variable(tf.random_uniform([hidden_size, vocab_size], -init_scale, init_scale))
softmax_b = tf.Variable(tf.random_uniform([vocab_size], -init_scale, init_scale))
logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b)
# Reshape logits to be a 3-D tensor for sequence loss
logits = tf.reshape(logits, [self.batch_size, self.num_steps, vocab_size])
# Use the contrib sequence loss and average over the batches
loss = tf.contrib.seq2seq.sequence_loss(
logits,
self.input_obj.targets,
tf.ones([self.batch_size, self.num_steps], dtype=tf.float32),
average_across_timesteps=False,
average_across_batch=True)
# Update the cost
self.cost = tf.reduce_sum(loss)
# get the prediction accuracy
self.softmax_out = tf.nn.softmax(tf.reshape(logits, [-1, vocab_size]))
self.predict = tf.cast(tf.argmax(self.softmax_out, axis=1), tf.int32)
correct_prediction = tf.equal(self.predict, tf.reshape(self.input_obj.targets, [-1]))
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
if not is_training:
return
self.learning_rate = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars), 5)
optimizer = tf.train.GradientDescentOptimizer(self.learning_rate)
# optimizer = tf.train.AdamOptimizer(self.learning_rate)
self.train_op = optimizer.apply_gradients(
zip(grads, tvars),
global_step=tf.contrib.framework.get_or_create_global_step())
# self.optimizer = tf.train.GradientDescentOptimizer(self.learning_rate).minimize(self.cost)
self.new_lr = tf.placeholder(tf.float32, shape=[])
self.lr_update = tf.assign(self.learning_rate, self.new_lr)
def assign_lr(self, session, lr_value):
session.run(self.lr_update, feed_dict={self.new_lr: lr_value})
def train(train_data, vocabulary, num_layers, num_epochs, batch_size, model_save_name,
learning_rate=1.0, max_lr_epoch=10, lr_decay=0.93, print_iter=50):
# setup data and models
training_input = Input(batch_size=batch_size, num_steps=35, data=train_data)
m = Model(training_input, is_training=True, hidden_size=650, vocab_size=vocabulary,
num_layers=num_layers)
init_op = tf.global_variables_initializer()
orig_decay = lr_decay
with tf.Session() as sess:
# start threads
sess.run([init_op])
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
saver = tf.train.Saver()
for epoch in range(num_epochs):
new_lr_decay = orig_decay ** max(epoch + 1 - max_lr_epoch, 0.0)
m.assign_lr(sess, learning_rate * new_lr_decay)
# m.assign_lr(sess, learning_rate)
# print(m.learning_rate.eval(), new_lr_decay)
current_state = np.zeros((num_layers, 2, batch_size, m.hidden_size))
curr_time = dt.datetime.now()
for step in range(training_input.epoch_size):
# cost, _ = sess.run([m.cost, m.optimizer])
if step % print_iter != 0:
cost, _, current_state = sess.run([m.cost, m.train_op, m.state],
feed_dict={m.init_state: current_state})
else:
seconds = (float((dt.datetime.now() - curr_time).seconds) / print_iter)
curr_time = dt.datetime.now()
cost, _, current_state, acc = sess.run([m.cost, m.train_op, m.state, m.accuracy],
feed_dict={m.init_state: current_state})
print("Epoch {}, Step {}, cost: {:.3f}, accuracy: {:.3f}, Seconds per step: {:.3f}".format(epoch,
step, cost, acc, seconds))
# save a model checkpoint
saver.save(sess, data_path + '\\' + model_save_name, global_step=epoch)
# do a final save
saver.save(sess, data_path + '\\' + model_save_name + '-final')
# close threads
coord.request_stop()
coord.join(threads)
def test(model_path, test_data, reversed_dictionary):
test_input = Input(batch_size=20, num_steps=35, data=test_data)
m = Model(test_input, is_training=False, hidden_size=650, vocab_size=vocabulary,
num_layers=2)
saver = tf.train.Saver()
with tf.Session() as sess:
# start threads
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
current_state = np.zeros((2, 2, m.batch_size, m.hidden_size))
# restore the trained model
saver.restore(sess, model_path)
# get an average accuracy over num_acc_batches
num_acc_batches = 30
check_batch_idx = 25
acc_check_thresh = 5
accuracy = 0
for batch in range(num_acc_batches):
if batch == check_batch_idx:
true_vals, pred, current_state, acc = sess.run([m.input_obj.targets, m.predict, m.state, m.accuracy],
feed_dict={m.init_state: current_state})
pred_string = [reversed_dictionary[x] for x in pred[:m.num_steps]]
true_vals_string = [reversed_dictionary[x] for x in true_vals[0]]
print("True values (1st line) vs predicted values (2nd line):")
print(" ".join(true_vals_string))
print(" ".join(pred_string))
else:
acc, current_state = sess.run([m.accuracy, m.state], feed_dict={m.init_state: current_state})
if batch >= acc_check_thresh:
accuracy += acc
print("Average accuracy: {:.3f}".format(accuracy / (num_acc_batches-acc_check_thresh)))
# close threads
coord.request_stop()
coord.join(threads)
if args.data_path:
data_path = args.data_path
train_data, valid_data, test_data, vocabulary, reversed_dictionary = load_data()
if args.run_opt == 1:
train(train_data, vocabulary, num_layers=2, num_epochs=60, batch_size=20,
model_save_name='two-layer-lstm-medium-config-60-epoch-0p93-lr-decay-10-max-lr')
else:
trained_model = args.data_path + "\\two-layer-lstm-medium-config-60-epoch-0p93-lr-decay-10-max-lr-38"
test(trained_model, test_data, reversed_dictionary)