forked from ratschlab/RGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkernel.py
110 lines (97 loc) · 3.41 KB
/
kernel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#!/usr/bin/env ipython
# Experimenting with kernel between two equal-length "time series".
# Note: kernel must be consistent for MMD formuluation to be valid.
# Note: the time series *may* be multi-dimensional.
import numpy as np
import scipy as sp
#from sklearn.metrics.pairwise import my_rbf
import matplotlib.pyplot as plt
import re
from fastdtw import fastdtw
from scipy.spatial.distance import euclidean
import pdb
import data_utils
seq_length = 30
num_signals = 1
num_samples = 10
X, pdf = data_utils.GP(seq_length, num_samples, num_signals)
# for testing: make Y quite similar to X
#X = data_utils.sine_wave(seq_length, num_samples, num_signals)
#, freq_low=2, freq_high=2.1)
#X = np.random.normal(size=(num_samples, seq_length, num_signals), scale=0.5)
#for i in range(1, num_samples):
# X[i] = X[i-1] + np.random.normal(size=(seq_length, num_signals), scale=0.3)
def cos_dist(x, y):
dist = 0.5*(1 - np.dot(x.T,y)[0, 0]/(np.linalg.norm(x)*np.linalg.norm(y)))
return dist
def my_rbf(x, y=None, gamma=1.0/(2.1)**2, withnorm=False):
"""
"""
if y is None:
y = x
if withnorm:
xn = x/np.linalg.norm(x)
yn = y/np.linalg.norm(y)
else:
xn = x
yn = y
dist = np.linalg.norm(xn - yn)
return np.exp(-gamma*(dist**2))
def compare_metrics(X, num=10):
"""
"""
fig, axarr = plt.subplots(num, 4, figsize=(15, 15))
xx = np.arange(30)
fig.suptitle(' '.join(['dtw', 'cos', 'euc', 'rbf']))
for (col, distance_measure) in enumerate([fastdtw, cos_dist, euclidean, my_rbf]):
dists = []
for i in range(num):
try:
d, _ = distance_measure(X[0], X[i])
except TypeError:
d = distance_measure(X[0], X[i])
if col == 3:
d = -d
dists.append(dtw)
# now, plot in order
for (i, j) in enumerate(np.argsort(dists)):
axarr[i, col].plot(xx, X[j])
axarr[i, col].plot(xx, X[0], alpha=0.5)
dtw, _ = fastdtw(X[0], X[j])
title = '%.1f %.1f %.1f %.1f' % (dtw, cos_dist(X[0], X[j]), euclidean(X[0], X[j]), my_rbf(X[0], X[j]))
#title = '%.1f' % (dtw)
axarr[i, col].set_title(title)
axarr[i, col].set_ylim(-1.1, 1.1)
plt.tight_layout()
plt.savefig("dtw.png")
plt.clf()
plt.close()
return True
def compare_y(X, scale, gamma=1):
seq_length = X.shape[1]
num_signals = X.shape[2]
Y = X + np.random.normal(size=(seq_length, num_signals), scale=scale)
x = X[0, :, :]
y = Y[0, :, :]
kxy = my_rbf(x, y, gamma=gamma)
print(kxy)
plt.plot(x[:, 0], color='blue')
plt.plot(x[:, 1], color='green')
plt.plot(x[:, 2], color='red')
plt.plot(y[:, 0], color='#4286f4')
plt.plot(y[:, 1], color='#20cc4b')
plt.plot(y[:, 2], color='#ea4b4b')
plt.axhline(y=kxy, color='black', linestyle='-', label='kxy')
plt.fill_between(plt.xlim(), 0, 1, facecolor='black', alpha=0.15)
plt.title('gamma' + str(gamma) + ' scale' + str(scale).zfill(3))
plt.xlim(0, seq_length-1)
plt.ylim(-1.01, 1.01)
#plt.ylim(4, 4)
plt.savefig('sine_gamma' + str(gamma) + '_scale' + str(scale*100).zfill(5) + '.png')
plt.clf()
plt.close()
#for scale in np.concatenate(([5, 1, 0.5, 0.4, 0.3, 0.2, 0.15, 0.1], np.arange(0.09, 0.00, -0.01))):
# compare_y(X, scale, 0.1)
# compare_y(X, scale, 0.5)
# compare_y(X, scale, 1)
# compare_y(X, scale, 2)