-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtest.py
366 lines (314 loc) · 12.5 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
"""create test set and test model"""
import os
import pickle
import random
import warnings
from typing import Union
warnings.simplefilter("ignore", UserWarning)
import time
import numpy as np
import torch
import torch.multiprocessing as mp
from hydra.utils import instantiate
from tqdm import tqdm
from src.config import config
from src.environment import Environment
from src.utils.utils import timeout
TIMEOUT_STEP_VAL = 1e9
@timeout(
config.test_timeout, default_value=(False, TIMEOUT_STEP_VAL, 0, 0)
) # default value for timeout is not success and large steps
def test_one_case(
args,
use_stepinfer_method: bool = True,
astar_type: int = 2,
active_agent_radius: int = 4,
use_aep: bool = True,
aep_astar_type: int = 2,
):
"""
Args:
- args: (env_set, network)
- use_stepinfer_method: bool. If True, use use step_infer method in Environment, else, do not use (`network.step` instead of `network.step_infer`)
- astar_type: int. A* type. None (do not use astar), 1, 2, 3
- active_agent_radius: int. Only if astar_type is not None. The radius of the active agent to be considered for astar
- use_aep: bool. If True, use AEP, else, do not use
Returns:
- success: bool. If all agents arrived to their goals
- steps: int. Number of steps
- num_comms: int. Number of communications
- arrived: int. Number of agents that arrived to their goals
"""
env_set, network, config = args
env = Environment()
env.load(env_set[0], env_set[1], env_set[2])
# Setting for inference techniques
env.astar_type = astar_type
env.active_agent_radius = active_agent_radius
env.use_aep = use_aep
env.aep_astar_type = aep_astar_type
if use_stepinfer_method:
obs, last_act, pos, no_agentnearby = env.observe_infer()
else:
obs, last_act, pos = env.observe()
done = False
network.reset()
step = 0
num_comm = 0
# Let's make an array of recorded locations
# location history: [num_agents, 4] # 4 previous steps
loc_history = -np.ones((env.num_agents, 4, 2), dtype=int)
# set history to -1 for first step to avoid conflict
loc_history[:, :] = -42
if env_set[0].shape[0] == 40:
max_episode_length = config.max_episode_length
elif env_set[0].shape[0] == 80:
max_episode_length = config.max_episode_length_80
else:
# raise ValueError("Invalid map length")
if config.data_mode == "normal":
raise ValueError("Invalid map length")
else:
if env_set[0].shape[0] == 63:
# as per SACHA's paper
max_episode_length = config.max_episode_warehouse
else:
max_episode_length = config.max_episode_length
# TODO: if there is "warehouse, then more"
# device is taken from network parameters
device = next(network.parameters()).device
agent_positions = []
while not done and env.steps < max_episode_length:
actions, q_val, _, _, comm_mask = network.step(
torch.as_tensor(obs.astype(np.float32)).to(device),
torch.as_tensor(last_act.astype(np.float32)).to(device),
torch.as_tensor(pos.astype(int)).to(device),
)
if use_stepinfer_method:
(obs, last_act, pos, no_agentnearby), done, info, loc_history = (
env.step_infer(q_val, no_agentnearby, loc_history)
)
else:
(obs, last_act, pos), _, done, info = env.step(actions)
step += 1
num_comm += np.sum(comm_mask)
agent_positions.append(np.copy(env.agents_pos))
arrived_num = np.sum(np.all(env.agents_pos == env.goals_pos, axis=1))
agent_positions = np.array(agent_positions)
return (
np.array_equal(env.agents_pos, env.goals_pos),
step,
num_comm,
arrived_num,
agent_positions,
)
def test_instance(args):
"""
Args:
-(...) same as `test_one_case`
- ensemble: list of tuples. Each tuple is a configuration for `test_one_case`. If not None, then use ensemble
Returns:
-(...) same as `test_one_case`
- all_res: tuple. (successes, steps, num_comms, arrived). For logging for each ensemble case
"""
test, network, config = args
ensemble = config.ensemble
# Take best result from ensemble
if ensemble is not None:
successes, steps, num_comms, arrived, positions = [], [], [], [], []
for conf_ in ensemble:
(
use_stepinfer_method,
astar_type,
active_agent_radius,
use_aep,
aep_astar_type,
) = conf_
su, st, nc, ar, ag_pos_ = test_one_case(
args,
use_stepinfer_method,
astar_type,
active_agent_radius,
use_aep,
aep_astar_type,
)
if st == TIMEOUT_STEP_VAL:
print(f"Timeout for ensemble {conf_}")
successes.append(su)
steps.append(st)
num_comms.append(nc)
arrived.append(ar)
positions.append(ag_pos_)
# take best result, namely the one with least steps (if not success, then most steps)
successes = np.array(successes)
steps = np.array(steps)
num_comms = np.array(num_comms)
arrived = np.array(arrived)
# set steps of not success to a large number to avoid not success
# make copy for function to work. steps will actually be from the best result
temp_steps = steps.copy() # in case there is no succeess
temp_steps[~successes] = 1e6
idx = np.argmin(temp_steps)
return (
successes[idx],
steps[idx],
num_comms[idx],
arrived[idx],
successes,
steps,
num_comms,
arrived,
positions[idx],
positions,
)
else:
# Else, just run the test
# return test_one_case(args, use_stepinfer_method, astar_type, active_agent_radius, use_aep, aep_astar_type)
return test_one_case(
args,
config.use_stepinfer_method,
config.astar_type,
config.active_agent_radius,
config.use_aep,
config.aep_astar_type,
config,
)
def load_data(case, config=config):
# note: case is just a configuration
if config.data_mode == "normal":
map_name, num_agents, density = case
print(f"test set: {map_name} length {num_agents} agents {density} density")
with open(
"./{}/{}length_{}agents_{}density.pth".format(
config.test_folder, map_name, num_agents, density
),
"rb",
) as f:
tests = pickle.load(f)
elif config.data_mode == "movingai":
# case: map_name, num_agents
map_name, num_agents = case
print(f"test set: {map_name} {num_agents} agents")
with open(f"./{config.test_folder}/{map_name}_{num_agents}agents.pth", "rb") as f:
# with open('./{}/{}length_{}agents_{}density.pth'.format(config.test_folder, case[0], case[1], case[2]), 'rb') as f:
def transform_list_element(x):
# transfer to array when loading
map_ = np.array(x[0])
agents_pos = np.array(x[1])
goals_pos = np.array(x[2])
return (map_, agents_pos, goals_pos)
initial_tests = pickle.load(f)
tests = [transform_list_element(x) for x in initial_tests]
else:
raise ValueError(f"Invalid mode {config.data_mode}")
return tests
def test_model(checkpoint_name: Union[int, str], config=config):
"""
test model in 'saved_models' folder
"""
with torch.inference_mode():
Network = instantiate({"_target_": config.model_target, "_partial_": True})
torch.manual_seed(config.test_seed)
np.random.seed(config.test_seed)
random.seed(config.test_seed)
DEVICE = torch.device("cpu")
torch.set_num_threads(1)
network = Network()
network.eval()
network.to(DEVICE)
pool = mp.Pool(mp.cpu_count() // 2)
state_dict = torch.load(
os.path.join(config.save_path, str(checkpoint_name) + ".pth"),
map_location=DEVICE,
)
network.load_state_dict(state_dict)
network.eval()
network.share_memory()
print(f"\n----------test model {config.name}@{checkpoint_name}----------")
all_results = {}
for case in config.test_env_settings:
init_time = time.time()
tests = load_data(case, config=config)
tests = [(test, network, config) for test in tests]
ret = tqdm(pool.imap(test_instance, tests), total=len(tests))
if config.ensemble is not None:
(
success,
steps,
num_comm,
arrived,
all_successes,
all_steps,
all_num_comms,
all_arrived,
best_pos,
all_pos,
) = zip(*ret)
else:
success, steps, num_comm, arrived, best_pos = zip(*ret)
all_pos = best_pos
print("success rate: {:.2f}%".format(sum(success) / len(success) * 100))
print("average step: {}".format(sum(steps) / len(steps)))
print("communication times: {}".format(sum(num_comm) / len(num_comm)))
print(f"average arrived agents : {sum(arrived)/len(arrived)} ")
print(f"Time taken for test set: {time.time()-init_time: .2f}")
fmt = f"Agents#{case[1]}/"
# Save results in pkl file
if config.data_mode == "normal":
subf_name = f"{case[0]}length_{case[1]}agents_{case[2]}density"
else:
subf_name = f"{case[0]}_{case[1]}agents"
folder = f"./results/{subf_name}"
os.makedirs(folder, exist_ok=True)
# create dictionary of default results
results = {
"success": success,
"steps": steps,
"num_comm": num_comm,
"arrived": arrived,
# "best_pos": best_pos,
# "pos": all_pos,
}
if config.save_positions:
results["best_pos"] = best_pos
results["pos"] = all_pos
if config.save_map_config:
results["map"] = [el[0] for el in tests] # 0 is the config
# If ensemble, then save all results
if config.ensemble is not None:
# for conf_ in config.ensemble:
all_successes = np.array(all_successes)
all_steps = np.array(all_steps)
all_num_comms = np.array(all_num_comms)
all_arrived = np.array(all_arrived)
for i, conf_ in enumerate(config.ensemble):
(
use_stepinfer,
astar_type,
active_agent_radius,
use_aep,
aep_astar_type,
) = conf_
results[
f"success_{use_stepinfer}_{astar_type}_{active_agent_radius}_{use_aep}_{aep_astar_type}"
] = all_successes[:, i]
results[
f"steps_{use_stepinfer}_{astar_type}_{active_agent_radius}_{use_aep}_{aep_astar_type}"
] = all_steps[:, i]
results[
f"num_comm_{use_stepinfer}_{astar_type}_{active_agent_radius}_{use_aep}_{aep_astar_type}"
] = all_num_comms[:, i]
results[
f"arrived_{use_stepinfer}_{astar_type}_{active_agent_radius}_{use_aep}_{aep_astar_type}"
] = all_arrived[:, i]
# Save
print(f"Saving results in {folder}/{config.name}_{checkpoint_name}.pkl")
with open(f"{folder}/{config.name}_{checkpoint_name}.pkl", "wb") as f:
pickle.dump(results, f)
# return results
all_results[case] = results
return all_results
if __name__ == "__main__":
# load trained model and reproduce results in paper
# Set as environment variable "current_config" as the path to the config file
test_model(65000)