-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDockerfile
89 lines (72 loc) · 3 KB
/
Dockerfile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Dockerfile may have following Arguments:
# tag - tag for the Base image, (e.g. 2.9.1 for tensorflow)
# branch - user repository branch to clone, i.e. test (default: main)
#
# To build the image:
# $ docker build -t <dockerhub_user>/<dockerhub_repo> --build-arg arg=value .
# or using default args:
# $ docker build -t <dockerhub_user>/<dockerhub_repo> .
#
# Be Aware! For the Jenkins CI/CD pipeline,
# input args are defined inside the JenkinsConstants.groovy, not here!
ARG tag=2.3.1-cuda11.8-cudnn8-runtime
# Base image, e.g. tensorflow/tensorflow:2.x.x-gpu
FROM pytorch/pytorch:${tag}
LABEL maintainer='Fahimeh Alibabaei '
LABEL version='0.0.1'
# Support for inference of the AI4LIFE model on the marketplace.
# What user branch to clone [!]
ARG branch=main
# Install Ubuntu packages
# - gcc is needed in Pytorch images because deepaas installation might break otherwise (see docs)
# (it is already installed in tensorflow images)
# Install packages
RUN DEBIAN_FRONTEND=noninteractive apt-get update && \
apt-get install -y --no-install-recommends \
gcc \
git \
curl \
&& rm -rf /var/lib/apt/lists/*
# Update python packages
# [!] Remember: DEEP API V2 only works with python>=3.6
RUN python3 --version && \
pip3 install --no-cache-dir --upgrade pip setuptools wheel
# Set LANG environment
ENV LANG=C.UTF-8
# Set the working directory
WORKDIR /srv
# Disable FLAAT authentication by default
ENV DISABLE_AUTHENTICATION_AND_ASSUME_AUTHENTICATED_USER=yes
# Initialization scripts
# deep-start can install JupyterLab or VSCode if requested
RUN git clone https://github.com/ai4os/deep-start /srv/.deep-start && \
ln -s /srv/.deep-start/deep-start.sh /usr/local/bin/deep-start
# Necessary for the Jupyter Lab terminal
ENV SHELL=/bin/bash
# Install Data Version Control
RUN pip3 install --no-cache-dir dvc dvc-webdav
# Install rclone (needed if syncing with NextCloud for training; otherwise remove)
RUN curl -O https://downloads.rclone.org/rclone-current-linux-amd64.deb && \
dpkg -i rclone-current-linux-amd64.deb && \
apt install -f && \
mkdir /srv/.rclone/ && \
touch /srv/.rclone/rclone.conf && \
rm rclone-current-linux-amd64.deb && \
rm -rf /var/lib/apt/lists/*
ENV RCLONE_CONFIG=/srv/.rclone/rclone.conf
#TODO: use this variable to load the model in warm
ENV MODEL_NAME="affectionate-cow"
# Install user app #--no-cache-dir
RUN git clone -b $branch --depth 1 https://github.com/ai4os/ai4os-ai4life-loader.git && \
cd ai4os-ai4life-loader && \
pip3 install --no-cache-dir -e . && \
#curl -o ./models/all_versions.json https://uk1s3.embassy.ebi.ac.uk/public-datasets/bioimage.io/all_versions.json && \
curl -o ./models/collection.json https://uk1s3.embassy.ebi.ac.uk/public-datasets/bioimage.io/collection.json
# Conditional cloning using shell commands
RUN if [ "$MODEL_NAME" = "affectionate-cow" ]; then \
pip3 install git+https://github.com/m-team-kit/uSplit.git@main \
; fi
EXPOSE 5000 6006 8888
# Launch deepaas
ENTRYPOINT [ "deep-start" ]
CMD ["--deepaas"]