-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgdme_test.m
executable file
·129 lines (106 loc) · 3.78 KB
/
gdme_test.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
% This script file test the gradient descent maxent (GDME) algorithm
%
clear all;
showflag = 1;
% function [E_rmse, E_aad, E_aid, E_sad, E_sid, E_time] = gdme_test(SNR,showflag)
%% reflectance from USGS library
load A;
load BANDS; % BANDS: selected 188 band index from original 224 bands
type = 5;
c = 4; estc = c;
A = A(BANDS,1:c);
% Generate simulated data
[mixed, abf] = getSynData(A, type, 7, 1, c-1, 1);
[M,N,Band] = size(mixed);
% Add Gaussian noise
SNR = 10;
variance = sum(mixed(:).^2)/10^(SNR/10)/M/N/Band;
n = sqrt(variance)*randn([M,N,Band]);
mixed = mixed+n;
mixed = reshape(mixed,M*N,Band)'; % column:bands, row:samples
% Test different algorithms
[A_gdme, s_gdme, t_gdme] = gdme(mixed, SNR, 1, estc, A);
[A_varnt, s_varnt, t_varnt] = gdme(mixed, SNR, 2, estc, A);
E_time = [t_gdme, t_varnt];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Algorithm evaluation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for method = 1:2
if method == 1
Aest = A_gdme; sest = s_gdme;
else method == 2
Aest = A_varnt; sest = s_varnt;
end
% Permute Results
CRD = corrcoef([A Aest]);
DD = abs(CRD(c+1:2*c,1:c));
perm_mtx = zeros(c,c);
aux=zeros(c,1);
for i=1:c
[ld cd]=find(max(DD(:))==DD);
ld=ld(1);cd=cd(1); % in the case of more than one maximum
perm_mtx(ld,cd)=1;
DD(:,cd)=aux; DD(ld,:)=aux';
end
Aest = Aest*perm_mtx;
sest = sest'*perm_mtx;
Sest = reshape(sest,[M,N,c]);
sest = sest';
% Postprocessing abundance maps
% if SNR < 20
% H = ones(3,3)/9;
% S_new = zeros(M,N,c);
% for i=1:4
% S_new(:,:,i) = conv2(Sest(:,:,i), H, 'same');
% end
% Sest = Snew;
% sest = reshape(Sest, M*N,c);
% sest = sest./repmat(sum(sest,2), [1 4]);
% end
% Visualize the estimation results
if showflag,
figure,
for i=1:c
subplot(c,4,4*i-3),
plot(A(:,i),'r'); axis([0 Band 0 1])
if i==1 title('True end-members'); end
subplot(c,4,4*i-2),
plot(Aest(:,i),'g');axis([0 Band 0 1])
if i==1 title('Estimated end-members'); end
subplot(c,4,4*i-1),
imagesc(reshape(abf(i,:),M,N));
if i==1 title('True abundance'); end
subplot(c,4,4*i),
imagesc(Sest(:,:,i));
if i==1 title('Estimated abundance'); end
end
end
% Quantitative evaluation of spectral signature and abundance
% Rmse error of abundances
E_rmse(method) = sqrt(sum(sum(((abf-sest).*(abf-sest)).^2))/(M*N*c));
% The angle between abundances (AAD)
nabf = diag(abf*abf');
nsest = diag(sest*sest');
ang_beta = 180/pi*acos( diag(abf*sest')./sqrt(nabf.*nsest));
E_aad(method) = mean(ang_beta.^2)^.5;
% Cross entropy between abundance (AID)
E_entropy = sum(abf.*log((abf+1e-9)./(sest+1e-9))) + sum(sest.*log((sest+1e-9)./(abf+1e-9)));
E_aid(method) = mean(E_entropy.^2)^.5;
% The angle between material signatures
nA = diag(A'*A);
nAest = diag(Aest'*Aest);
ang_theta = 180/pi*acos( diag(A'*Aest)./sqrt(nA.*nAest) );
E_sad(method) = mean(ang_theta.^2)^.5;
% The spectral information divergence
pA = A./(repmat(sum(A),[length(A(:,1)) 1]));
qA = Aest./(repmat(sum(Aest),[length(A(:,1)) 1]));
qA = abs(qA);
SID = sum(pA.*log(pA./qA)) + sum(qA.*log(qA./pA));
E_sid(method) = mean(SID.^2)^.5;
end
E_rmse
E_aad
E_aid
E_sad
E_sid
E_time