-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathvca.m
193 lines (156 loc) · 6.69 KB
/
vca.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
function [Ae, indice, Rp] = vca(R,varargin)
% Vertex Component Analysis
%
% [Ae, indice, Rp ]= vca(R,'Endmembers',p,'SNR',r,'verbose',v)
%
% ------- Input variables -------------
% R - matrix with dimensions L(channels) x N(pixels)
% each pixel is a linear mixture of p endmembers
% signatures R = M x s, where s = gamma x alfa
% gamma is a illumination perturbation factor and
% alfa are the abundance fractions of each endmember.
% 'Endmembers'
% p - positive integer number of endmembers in the scene
%
% ------- Output variables -----------
% A - estimated mixing matrix (endmembers signatures)
% indice - pixels that were chosen to be the most pure
% Rp - Data matrix R projected.
%
% ------- Optional parameters---------
% 'SNR'
% r - (double) signal to noise ratio (dB)
% 'verbose'
% v - [{'on'} | 'off']
% ------------------------------------
%
% Authors: José Nascimento ([email protected])
% José Bioucas Dias ([email protected])
% Copyright (c)
% version: 2.1 (7-May-2004)
%
% For any comment contact the authors
%
% more details on:
% José M. P. Nascimento and José M. B. Dias
% "Vertex Component Analysis: A Fast Algorithm to Unmix Hyperspectral Data"
% submited to IEEE Trans. Geosci. Remote Sensing, vol. .., no. .., pp. .-., 2004
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Default parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
verbose = 'on'; % default
snr_input = 0; % default this flag is zero,
% which means we estimate the SNR
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Looking for input parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
dim_in_par = length(varargin);
if (nargin - dim_in_par)~=1
error('Wrong parameters');
elseif rem(dim_in_par,2) == 1
error('Optional parameters should always go by pairs');
else
for i = 1 : 2 : (dim_in_par-1)
switch lower(varargin{i})
case 'verbose'
verbose = varargin{i+1};
case 'endmembers'
p = varargin{i+1};
case 'snr'
SNR = varargin{i+1};
snr_input = 1; % flag meaning that user gives SNR
otherwise
fprintf(1,'Unrecognized parameter:%s\n', varargin{i});
end %switch
end %for
end %if
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Initializations
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if isempty(R)
error('there is no data');
else
[L N]=size(R); % L number of bands (channels)
% N number of pixels (LxC)
end
if (p<0 | p>L | rem(p,1)~=0),
error('ENDMEMBER parameter must be integer between 1 and L');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SNR Estimates
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if snr_input==0,
r_m = mean(R,2);
R_m = repmat(r_m,[1 N]); % mean of each band
R_o = R - R_m; % data with zero-mean
[Ud,Sd,Vd] = svds(R_o*R_o'/N,p); % computes the p-projection matrix
x_p = Ud' * R_o; % project the zero-mean data onto p-subspace
SNR = estimate_snr(R,r_m,x_p);
if strcmp (verbose, 'on'), fprintf(1,'SNR estimated = %g[dB]\n',SNR); end
else
if strcmp (verbose, 'on'), fprintf(1,'input SNR = %g[dB]\t',SNR); end
end
SNR_th = 15 + 10*log10(p);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Choosing Projective Projection or
% projection to p-1 subspace
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if SNR < SNR_th,
if strcmp (verbose, 'on'), fprintf(1,'... Select the projective proj.\n',SNR); end
d = p-1;
if snr_input==0, % it means that the projection is already computed
Ud= Ud(:,1:d);
else
r_m = mean(R,2);
R_m = repmat(r_m,[1 N]); % mean of each band
R_o = R - R_m; % data with zero-mean
[Ud,Sd,Vd] = svds(R_o*R_o'/N,d); % computes the p-projection matrix
x_p = Ud' * R_o; % project thezeros mean data onto p-subspace
end
Rp = Ud * x_p(1:d,:) + repmat(r_m,[1 N]); % again in dimension L
x = x_p(1:d,:); % x_p = Ud' * R_o; is on a p-dim subspace
c = max(sum(x.^2,1))^0.5;
y = [x ; c*ones(1,N)] ;
else
if strcmp (verbose, 'on'), fprintf(1,'... Select proj. to p-1\n',SNR); end
d = p;
[Ud,Sd,Vd] = svds(R*R'/N,d); % computes the p-projection matrix
x_p = Ud'*R;
Rp = Ud * x_p(1:d,:); % again in dimension L (note that x_p has no null mean)
x = Ud' * R;
u = mean(x,2); %equivalent to u = Ud' * r_m
y = x./ repmat( sum( x .* repmat(u,[1 N]) ) ,[d 1]);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% VCA algorithm
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
indice = zeros(1,p);
A = zeros(p,p);
A(p,1) = 1;
for i=1:p
w = rand(p,1);
f = w - A*pinv(A)*w;
f = f / sqrt(sum(f.^2));
v = f'*y;
[v_max indice(i)] = max(abs(v));
A(:,i) = y(:,indice(i)); % same as x(:,indice(i))
end
Ae = Rp(:,indice);
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% End of the vca function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Internal functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function snr_est = estimate_snr(R,r_m,x)
[L N]=size(R); % L number of bands (channels)
% N number of pixels (Lines x Columns)
[p N]=size(x); % p number of endmembers (reduced dimension)
P_y = sum(R(:).^2)/N;
P_x = sum(x(:).^2)/N + r_m'*r_m;
snr_est = 10*log10( (P_x - p/L*P_y)/(P_y- P_x) );
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%