-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
132 lines (117 loc) · 6.03 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
from SRNTT.model import *
import argparse
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
parser = argparse.ArgumentParser(description='SRNTT')
# init parameters
parser.add_argument('--is_train', type=str2bool, default=False)
parser.add_argument('--srntt_model_path', type=str, default='SRNTT/models/SRNTT')
parser.add_argument('--vgg19_model_path', type=str, default='SRNTT/models/VGG19/imagenet-vgg-verydeep-19.mat')
parser.add_argument('--save_dir', type=str, default=None, help='dir of saving intermediate training results')
parser.add_argument('--num_res_blocks', type=int, default=16, help='number of residual blocks')
# train parameters
parser.add_argument('--input_dir', type=str, default='data/train/input', help='dir of input images')
parser.add_argument('--ref_dir', type=str, default='data/train/ref', help='dir of reference images')
parser.add_argument('--map_dir', type=str, default='data/train/map_321', help='dir of texture maps of reference images')
parser.add_argument('--batch_size', type=int, default=9)
parser.add_argument('--num_init_epochs', type=int, default=5)
parser.add_argument('--num_epochs', type=int, default=50)
parser.add_argument('--learning_rate', type=float, default=1e-4)
parser.add_argument('--beta1', type=float, default=0.9)
parser.add_argument('--use_pretrained_model', type=str2bool, default=True)
parser.add_argument('--use_init_model_only', type=str2bool, default=False, help='effect if use_pretrained_model is true')
parser.add_argument('--w_per', type=float, default=1e-4, help='weight of perceptual loss between output and ground truth')
parser.add_argument('--w_tex', type=float, default=1e-4, help='weight of texture loss between output and texture map')
parser.add_argument('--w_adv', type=float, default=1e-6, help='weight of adversarial loss')
parser.add_argument('--w_bp', type=float, default=0.0, help='weight of back projection loss')
parser.add_argument('--w_rec', type=float, default=1.0, help='weight of reconstruction loss')
parser.add_argument('--vgg_perceptual_loss_layer', type=str, default='relu5_1', help='the VGG19 layer name to compute perceptrual loss')
parser.add_argument('--is_WGAN_GP', type=str2bool, default=True, help='whether use WGAN-GP')
parser.add_argument('--is_L1_loss', type=str2bool, default=True, help='whether use L1 norm')
parser.add_argument('--param_WGAN_GP', type=float, default=10, help='parameter for WGAN-GP')
parser.add_argument('--input_size', type=int, default=40)
parser.add_argument('--use_weight_map', type=str2bool, default=False)
parser.add_argument('--use_lower_layers_in_per_loss', type=str2bool, default=False)
# test parameters
parser.add_argument('--result_dir', type=str, default='result', help='dir of saving testing results')
parser.add_argument('--ref_scale', type=float, default=1.0)
parser.add_argument('--is_original_image', type=str2bool, default=True)
args = parser.parse_args()
if args.is_train:
# record parameters to file
if args.save_dir is None:
args.save_dir = 'default_save_dir'
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
with open(os.path.join(args.save_dir, 'arguments.txt'), 'w') as f:
for arg in sorted(vars(args)):
line = '{:>30}\t{:<10}\n'.format(arg, getattr(args, arg))
bar = ''
f.write(line)
f.close()
srntt = SRNTT(
srntt_model_path=args.srntt_model_path,
vgg19_model_path=args.vgg19_model_path,
save_dir=args.save_dir,
num_res_blocks=args.num_res_blocks
)
srntt.train(
input_dir=args.input_dir,
ref_dir=args.ref_dir,
map_dir=args.map_dir,
batch_size=args.batch_size,
num_init_epochs=args.num_init_epochs,
num_epochs=args.num_epochs,
learning_rate=args.learning_rate,
beta1=args.beta1,
use_pretrained_model=args.use_pretrained_model,
use_init_model_only=args.use_init_model_only,
weights=(args.w_per, args.w_tex, args.w_adv, args.w_bp, args.w_rec),
vgg_perceptual_loss_layer=args.vgg_perceptual_loss_layer,
is_WGAN_GP=args.is_WGAN_GP,
is_L1_loss=args.is_L1_loss,
param_WGAN_GP=args.param_WGAN_GP,
input_size=args.input_size,
use_weight_map=args.use_weight_map,
use_lower_layers_in_per_loss=args.use_lower_layers_in_per_loss
)
else:
if args.save_dir is not None:
# read recorded arguments
fixed_arguments = ['srntt_model_path', 'vgg19_model_path', 'save_dir', 'num_res_blocks', 'use_weight_map']
if os.path.exists(os.path.join(args.save_dir, 'arguments.txt')):
with open(os.path.join(args.save_dir, 'arguments.txt'), 'r') as f:
for arg, line in zip(sorted(vars(args)), f.readlines()):
arg_name, arg_value = line.strip().split('\t')
if arg_name in fixed_arguments:
fixed_arguments.remove(arg_name)
try:
if isinstance(getattr(args, arg_name), bool):
setattr(args, arg_name, str2bool(arg_value))
else:
setattr(args, arg_name, type(getattr(args, arg_name))(arg_value))
except:
print('Unmatched arg_name: %s!' % arg_name)
srntt = SRNTT(
srntt_model_path=args.srntt_model_path,
vgg19_model_path=args.vgg19_model_path,
save_dir=args.save_dir,
num_res_blocks=args.num_res_blocks,
)
srntt.test(
input_dir=args.input_dir,
ref_dir=args.ref_dir,
use_pretrained_model=args.use_pretrained_model,
use_init_model_only=args.use_init_model_only,
use_weight_map=args.use_weight_map,
result_dir=args.result_dir,
ref_scale=args.ref_scale,
is_original_image=args.is_original_image
)