forked from francescacairoli/CQR_Quantitative_NPM
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathTrainQR_multiquantile.py
170 lines (123 loc) · 4.74 KB
/
TrainQR_multiquantile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import pickle
import numpy as np
import torch
from torch.autograd import Variable
from torch.optim.lr_scheduler import ExponentialLR
import matplotlib.pyplot as plt
plt.rcParams.update({'font.size': 22})
from tqdm import tqdm
from QR import *
cuda = True if torch.cuda.is_available() else False
FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
class TrainQR():
'''
Class containing all the necessary methods to train a quantile regressor (QR) at level quantiles
'''
def __init__(self, model_name, dataset, idx = None, cal_hist_size = 50, test_hist_size = 2000, quantiles = [0.05, 0.95], opt = "Adam", n_hidden = 50, xavier_flag = False, scheduler_flag = False, drop_out_rate = 0.1):
super(TrainQR, self).__init__()
self.model_name = model_name
self.dataset = dataset
self.alpha = 0.1
if idx:
self.idx = idx
self.models_path = "Models/"+self.model_name+"/ID_"+idx
self.results_path = "Results/"+self.model_name+"/ID_"+idx
else:
rnd_idx = str(np.random.randint(0,100000))
self.idx = rnd_idx
self.models_path = "Models/"+self.model_name+"/ID_"+rnd_idx
self.results_path = "Results/"+self.model_name+"/ID_"+rnd_idx
os.makedirs(self.models_path, exist_ok=True)
os.makedirs(self.results_path, exist_ok=True)
self.cal_hist_size = cal_hist_size
self.test_hist_size = test_hist_size
self.valid_set_dim = 100
self.quantiles = quantiles
self.nb_quantiles = len(quantiles)
self.opt = opt
self.xavier_flag = xavier_flag
self.n_hidden = n_hidden
self.scheduler_flag = scheduler_flag
self.drop_out_rate = drop_out_rate
def pinball_loss(self, f_star, y, q_idx):
n = len(y)
loss = 0
diff = y-f_star[:, q_idx]
for i in range(n):
if diff[i]>0:
loss += self.quantiles[q_idx]*diff[i]
else:
loss += (self.quantiles[q_idx]-1)*diff[i]
return loss/n
def initialize(self):
self.dataset.load_data()
self.qr_model = QR(input_size = int(self.dataset.x_dim), output_size = self.nb_quantiles, hidden_size = self.n_hidden, xavier_flag = self.xavier_flag, drop_out_rate = self.drop_out_rate)
if cuda:
self.qr_model.cuda()
def train(self, n_epochs, batch_size, lr):
self.n_epochs = n_epochs
self.batch_size = batch_size
self.lr = lr
if self.opt == "Adam":
optimizer = torch.optim.Adam(self.qr_model.parameters(), lr=lr)
else:
optimizer = torch.optim.RMSprop(self.qr_model.parameters(), lr=lr)
scheduler = ExponentialLR(optimizer, gamma=0.9)
self.net_path = self.results_path+"/qr_{}epochs.pt".format(n_epochs)
losses = []
val_losses = []
bat_per_epo = self.dataset.n_training_points // batch_size
Xt_val = Variable(FloatTensor(np.repeat(self.dataset.X_cal, self.cal_hist_size, axis = 0)[:(self.valid_set_dim*self.cal_hist_size)]))
Tt_val = Variable(FloatTensor(self.dataset.R_cal[:(self.valid_set_dim*self.cal_hist_size)]))
for epoch in tqdm(range(n_epochs)):
if (epoch+1) % 25 == 0:
print("Epoch= {},\t loss = {:2.4f}".format(epoch+1, losses[-1]))
tmp_val_loss = []
tmp_loss = []
for i in range(bat_per_epo):
# Select a minibatch
state, rob, sign, b_ix = self.dataset.generate_mini_batches(batch_size)
Xt = Variable(FloatTensor(state))
Tt = Variable(FloatTensor(rob))
# initialization of the gradients
optimizer.zero_grad()
# Forward propagation: compute the output
hypothesis = self.qr_model(Xt)
# Computation of the loss
loss = 0
for q in range(self.nb_quantiles):
loss += self.pinball_loss(hypothesis, Tt, q) # <= compute the loss function
loss = loss/self.nb_quantiles
val_loss = 0
for qv in range(self.nb_quantiles):
val_loss += self.pinball_loss(self.qr_model(Xt_val), Tt_val, qv)
val_loss = val_loss/self.nb_quantiles
# Backward propagation
loss.backward() # <= compute the gradients
# Update parameters (weights and biais)
optimizer.step()
# Print some performance to monitor the training
tmp_loss.append(loss.item())
tmp_val_loss.append(val_loss.item())
if self.scheduler_flag:
scheduler.step()
losses.append(np.mean(tmp_loss))
val_losses.append(np.mean(tmp_val_loss))
fig_loss = plt.figure()
plt.plot(np.arange(n_epochs), losses, label="train", color="blue")
plt.plot(np.arange(n_epochs), val_losses, label="valid", color="green")
plt.title("QR loss")
plt.legend()
plt.tight_layout()
fig_loss.savefig(self.models_path+"/qr_losses.png")
plt.close()
def save_model(self):
self.net_path = self.models_path+"/qr_{}epochs.pt".format(self.n_epochs)
torch.save(self.qr_model, self.net_path)
def load_model(self, n_epochs):
self.net_path = self.models_path+"/qr_{}epochs.pt".format(n_epochs)
self.qr_model = torch.load(self.net_path)
self.qr_model.eval()
if cuda:
self.qr_model.cuda()