forked from YBIGTA/pytorch-hair-segmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
115 lines (88 loc) · 3.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# -*- coding: utf-8 -*-
import os
import gc
import sys
import copy
import pickle
import logging
import argparse
from utils.trainer_verbose import train_with_ignite, train_without_ignite, get_optimizer
from utils import check_mkdir
import torch
from networks import mobile_hair
logger = logging.getLogger('hair segmentation project')
def str2bool(s):
return s.lower() in ('t', 'true', '1')
def get_args():
parser = argparse.ArgumentParser(description='Hair Segmentation')
parser.add_argument('--networks', default='mobilenet')
parser.add_argument('--scheduler', default='ReduceLROnPlateau')
parser.add_argument('--dataset', default='figaro')
parser.add_argument('--data_dir', default='./data/Figaro1k')
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--epochs', default=5, type=int)
parser.add_argument('--lr', default=0.0001, type=float)
parser.add_argument('--num_workers', type=int, default=2)
parser.add_argument('--img_size',type=int, default=256)
parser.add_argument('--use_pretrained', type=str, default='ImageNet')
parser.add_argument('--ignite', type=str2bool, default=True)
parser.add_argument('--visdom', type=str2bool, default=False)
parser.add_argument('--optimizer', type=str, default='adam')
parser.add_argument('--momentum', type=float, default=0.9)
args = parser.parse_args()
return args
def main():
args = get_args()
check_mkdir('./logs')
logging_name = './logs/{}_{}_lr_{}.txt'.format(args.networks,
args.optimizer,
args.lr)
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter(
'[%(asctime)10s][%(levelname)s] %(message)s',
datefmt='%Y/%m/%d %H:%M:%S'
)
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
file_handler = logging.FileHandler(logging_name)
file_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
logger.addHandler(file_handler)
logger.info('arguments:{}'.format(" ".join(sys.argv)))
if args.ignite is False:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = mobile_hair.MobileMattingFCN()
if torch.cuda.is_available():
if torch.cuda.device_count() > 1:
print('multi gpu')
model = torch.nn.DataParallel(model)
model.to(device)
loss = mobile_hair.HairMattingLoss()
optimizer = get_optimizer(args.optimizer, model, args.lr, args.momentum)
# torch.optim.Adam(filter(lambda p: p.requires_grad,model.parameters()), lr=0.0001, betas=(0.9, 0.999))
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min')
train_without_ignite(model,
loss,
batch_size=args.batch_size,
img_size=args.img_size,
epochs=args.epochs,
lr=args.lr,
num_workers=args.num_workers,
optimizer=optimizer,
logger=logger,
gray_image=True,
scheduler=scheduler,
viz=args.visdom)
else: train_with_ignite(networks=args.networks,
dataset=args.dataset,
data_dir=args.data_dir,
batch_size=args.batch_size,
epochs=args.epochs,
lr=args.lr,
num_workers=args.num_workers,
optimizer=args.optimizer,
momentum=args.momentum,
img_size=args.img_size,
logger=logger)
if __name__ == '__main__':
main()