-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDay3-actual.R
238 lines (181 loc) · 6.38 KB
/
Day3-actual.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#Day 3 actual
library(tidyverse)
surveys <- read_csv('data/portal_data_joined.csv')
# tbl-df - tibble data frame
class(surveys)
surveys
# observe the didsplay
# select
select(surveys,month,year)
# filter
filter(surveys,month==7)
#surveys[surveys$month==7,] old way
# select and filter at the same time
# way 1
sub_select_columns <- select(surveys,month,year,species_id)
sub_select_columns
# filtered result for month 7 with 3 columns
sub_select_columns_7 <- filter(sub_select_columns,month==7)
# Using of %>%
surveys %>% filter(month==7) %>% select(month,year,species_id)
# Using pipes,
# Q subset the surveys data to include animals collected before 1995
# and retain only the columns year, sex, and weight.
surveys %>% filter(year < 1995) %>% select(year,sex,weight) %>% head()
# Q subset the surveys data to include female animals collected before 1980
# and retain only the columns year, sex, and weight.
# | or
# & and
surveys %>% filter(year < 1980 & sex=='F' ) %>% select(year,sex,weight) %>% head()
# Mutate - add new columns
# weight in kg
surveys %>%
mutate(weight_kg = weight/1000)%>%
select(weight,weight_kg) %>% head()
# add another column - weight * 2
surveys %>% mutate(weight_kg = weight/1000,weight_by2 = weight*2) %>%
select(weight,weight_kg,weight_by2) %>% head()
# skip NAs
surveys %>% filter(!is.na(weight)) %>% select(weight)
# remove NAs and do the weight conversion
surveys %>%
filter(!is.na(weight)) %>%
mutate(weight_kg = weight/1000) %>%
select(weight,weight_kg) %>%
head()
# only observations with real weights
notNA_surveys <- surveys %>%
filter(!is.na(weight)) %>%
mutate(weight_kg = weight/1000)
# Challenge questions
#2nd
# Using chaining (filtering and selection)
# & - and
# Q create new dataframe with following criteria,
# hindfoot_half length less than 30, should not contain NAs
# the output contains new column called 'hindfoot_half' and species_id
# select species_id column and the new column 'hindfoot_half'
surveys %>% filter(!is.na(hindfoot_length)) %>%
mutate(hindfoot_half = hindfoot_length/2) %>%
filter(hindfoot_half < 30) %>%
select(species_id,hindfoot_half) %>%
head()
# Q create new dataframe with following criteria, male,
# hindfoot_half length less than 30, should not contain NAs
# the output contains new column called 'hindfoot_half' and species_id
# select species_id column and the new column 'hindfoot_half'
surveys %>% filter(!is.na(hindfoot_length)) %>%
mutate(hindfoot_half = hindfoot_length/2) %>%
filter(hindfoot_half < 30 & sex=="M") %>%
select(species_id,hindfoot_half) %>%
head()
# split-combine
surveys %>%
group_by(species_id,sex) %>%
summarise(min_weight = min(weight))
# take out NAs
surveys %>%
filter(!is.na(weight)) %>%
group_by(species_id,sex) %>%
summarise(min_weight = min(weight))
# additional summary columns
surveys %>%
filter(!is.na(weight)) %>%
group_by(species_id,sex) %>%
summarise(min_weight = min(weight),max_weight = max(weight),mean_weight= mean(weight)) %>%
select(species_id,min_weight,max_weight,mean_weight)
#use the na.rm , to do the same with summary operations
surveys %>%
group_by(species_id,sex,weight) %>%
summarise(min_weight = min(weight,na.rm = TRUE))
# todo - get back to na.rm parameter
# arrange - sort
surveys %>%
filter(!is.na(weight)) %>%
group_by(species_id,sex) %>%
summarise(min_weight = min(weight)) %>%
arrange(min_weight)
# descending
surveys %>%
filter(!is.na(weight)) %>%
group_by(species_id,sex) %>%
summarise(min_weight = min(weight)) %>%
arrange(desc(min_weight))
# Sampling rows and counting based on factors(keys)
surveys %>%
filter(!is.na(weight)) %>%
group_by(species_id,sex) %>%
summarise(min_weight = min(weight)) %>% print(5)
# sample n rows
surveys %>%
filter(!is.na(weight)) %>% sample_n(10)
# fraction
surveys %>%
filter(!is.na(weight)) %>% sample_frac(.25)
# observations by gender
surveys %>% count(sex)
# by plot
surveys %>% count(plot_id,sex)
# by plot, by species
surveys %>% count(plot_id,species_id,sex,sort = TRUE)
# arrange
surveys %>%
count(plot_id,species_id,sex) %>%
arrange(species_id,desc(n))
surveys %>% count(plot_id,sex) %>% arrange(plot_id,desc(n))
#3rd Challenge
#Q how many animals were caught in each plot_type
# count
surveys %>% count(plot_type)
#Q Use group_by and summarise() to find mean, min and max
# hindfoot length for each species (use species_id)
# also add number of observations for each (noob = n())
# group_by filter and summarise
surveys%>% filter(!is.na(hindfoot_length)) %>%
group_by(species_id) %>%
summarise(noofob=n(),mean_length= mean(hindfoot_length),min_length= min(hindfoot_length),max_length= max(hindfoot_length))
# Q which one was the heaviest animal measured for each year(year)?
# Return the columns year, genus, species_id and weight
# groupby , filter and select
surveys %>%
filter(!is.na(weight)) %>%
group_by(year) %>%
filter(weight == max(weight)) %>%
select(year,genus,species_id,weight) %>%
arrange(weight)
#how do I get more columns
surveys%>% filter(!is.na(hindfoot_length)) %>%
group_by(species_id,sex) %>%
summarise(noofob=n(),max_length= max(hindfoot_length))
# spread and gather
# Compare mean weights of species between plots
# spread()
# three main args
# (data, key_column -> new_column,value_column -> fill the new column)
surveys_summary <- surveys %>%
filter(!is.na(weight)) %>%
group_by(genus,plot_id) %>%
summarise( mean_weight = mean(weight))
#spread
survey_spread <- surveys_summary %>%
spread(key = genus,value = mean_weight)
#fill the NAs with 0
survey_spread <- surveys_summary %>%
spread(key = genus,value = mean_weight,fill=0)
#
survey_spread
#gather
# 3 args are
# gather(data,key column -> from column namesand fill, value = correspomding to key
#names of the column to fill)
surveys_gather <- gather(survey_spread,key=genus,value = mean_weight, -plot_id)
surveys_gather <- gather(survey_spread,key=genus,value = mean_weight, Baiomys:Spermophilus)
#Closing - saving your analysis
surveys%>% filter(!is.na(hindfoot_length)) %>%
group_by(species_id,sex) %>%
summarise(noofob=n(),max_length= max(hindfoot_length)) %>%
write_csv('data/summary_by_species.csv')
# save your species weight analysis
write_csv(survey_spread,'data/spread_by_species.csv')
# read in survey spread you just created
survey_spread_n <- read_csv('data/spread_by_species.csv')