-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_regonition_attendance.py
108 lines (88 loc) · 3.36 KB
/
face_regonition_attendance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import cv2
from PIL import Image
import numpy as np
import face_recognition
import dlib
import os
class my_dictionary(dict):
def __init__(self):
self = dict()
def add(self, key, value):
self[key] = value
def thug():
maskPath = "hack.png"
faceCascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")
mask = Image.open(maskPath)
def thug_mask(image):
gray=cv2.cvtColor(image,cv2.COLOR_BGR2RGBA)
faces = faceCascade.detectMultiScale(gray, 2)
background = Image.fromarray(image)
for (x,y,w,h) in faces:
# resize mask
r = mask.resize((w,h), Image.ANTIALIAS)
o = (x,y)
background.paste(r, o, mask=r)
return np.asarray(background)
cap = cv2.VideoCapture(cv2.CAP_ANY)
while True:
ret, frame = cap.read()
if ret == True:
cv2.imshow('THUG LIFE', thug_mask(frame))
if cv2.waitKey(1) ==ord('q'):
break
cap.release()
cv2.destroyAllWindows()
video_capture = cv2.VideoCapture(0)
known_face_names=[]
# Load a sample picture and learn how to recognize it.
known_face_encodings=[]
list=os.listdir('data/')
attendence=my_dictionary()
for file in list:
attendence.add(file,'absent')
known_face_names.append(file)
known_face_encodings.append(face_recognition.face_encodings(face_recognition.load_image_file('./data/'+file))[0])
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while True:
ret, frame = video_capture.read()
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
rgb_small_frame = small_frame[:, :, ::-1]
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
attendence.add(name,"present")
face_names.append(name)
print(attendence)
process_this_frame = not process_this_frame
for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# Display the resulting image
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()