forked from Logan1x/Python-Scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyseTweets.py
140 lines (110 loc) · 3.28 KB
/
analyseTweets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import csv
import random
import re
import codecs #provides transparent encoding/decoding
from textblob import TextBlob #Library for Text Processing
import time
from collections import Counter
#Plotting dependecies
import matplotlib.pyplot as plt; plt.rcdefaults()
import numpy as np
import matplotlib.pyplot as plt
#Sentiment values
positive=0
negative=0
neutral=0
total=0
hashtags = []
#Loading.....
print("Performing Sentiment Analysis",end="")
for i in range(5):
print(".",end="")
time.sleep(1)
# reading csv file
filepath="demonetization-tweets.csv"
with codecs.open(filepath, "r",encoding='utf-8', errors='ignore') as csvfile:
reader = csv.reader(csvfile)
tweetsList=[]
cleanTweetsList=[]
for row in reader:
tweet=row[2].strip() #contains tweet
cleanTweet=" ".join(re.findall("[a-zA-Z]+",tweet))
analysis=TextBlob(cleanTweet)
#appending tweet to list
tweetsList.append(tweet)
cleanTweetsList.append(cleanTweet)
#Assigning polarity and calculating count
total=total+1
if(analysis.sentiment.polarity>0):
positive=positive+1
if(analysis.sentiment.polarity==0):
neutral=neutral+1
else:
negative=negative+1
#Result
print() #newline
print("Total Tweets: ",total)
print('Positive = ',positive)
print('Neutral= ',neutral)
print('Negative= ',negative)
#Random number generator to pick tweets
randomTweets=[]
randomCleanTweets=[]
randomNumber=random.sample(range(1, 6000), 5)
index=0
#Collecting random tweets
for i in range(5):
number=random.randint(1,6000) #Picks a random number between 1-6000
randomTweets.append(tweetsList[randomNumber[index]]) #Stores a random tweet from data without repeatition
randomCleanTweets.append(tweetsList[randomNumber[index]])
index=index+1
for tweet in randomCleanTweets:
print()
print(tweet,end=' ')
analysis=TextBlob(tweet)
print(" => ",analysis.sentiment)
#Writing random tweets to a text file for display
with open('tweets.txt', 'w') as file:
for tweet in randomTweets:
file.write(tweet)
file.write('<br><br>\n')
#Finding the hashtags in all the tweets
finalcount={}
for i in tweetsList:
hashtags.append(re.findall(r"#(\w+)", i))
hashtagnew = [item for sub in hashtags for item in sub]
counts = Counter(hashtagnew)
counts = dict(counts)
finalcount = dict(sorted(counts.items(), key=lambda kv: kv[1], reverse=True))
countname = list(finalcount.keys())
#Plotting data
#Bar Graph
objects = ('Positive','Neutral','Negative')
y_pos = np.arange(len(objects))
performance = [positive,neutral,negative]
plt.bar(y_pos, performance, align='center', alpha=0.5)
plt.xticks(y_pos, objects)
plt.ylabel('# of tweets')
plt.title('Twitter Sentiment Analysis- Demonetisation (Bar Graph) \n')
plt.show()
#Pie Graph
colors = ['yellowgreen', 'gold', 'orangered']
explode = (0, 0, 0.1) # explode last slice
plt.pie(performance, explode=explode, labels=objects, colors=colors,
autopct='%1.1f%%', shadow=False, startangle=140)
plt.axis('equal')
plt.title('Twitter Sentiment Analysis- Demonetisation (Pie Chart) \n')
plt.show()
# Hashtag Plot
x = np.arange(len(finalcount))
y = list(finalcount.values())
x = x[:15]
y = y[:15]
countname = countname[:15]
plt.bar(x, y)
plt.title('Most Trending Hashtags\n')
plt.xticks(x, countname, rotation='vertical')
plt.ylabel('Number of tweets')
plt.xlabel('#Hashtags')
plt.tight_layout()
plt.show()