-
Notifications
You must be signed in to change notification settings - Fork 67
/
Copy pathdetect.py
98 lines (85 loc) · 3.96 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import numpy as np
import dlib
from imgaug import augmenters as iaa
import pandas as pd
from sklearn.svm import SVC
import random
face_encoder = dlib.face_recognition_model_v1('./model/dlib_face_recognition_resnet_model_v1.dat')
face_pose_predictor = dlib.shape_predictor('./model/shape_predictor_68_face_landmarks.dat')
def encoding_faces(images, label, coord_detect):
"""
Encoding a list of faces using FaceNet generating a 128D vector
:param images: list of images of faces to encode
:param coord_detect: coordinates of the detection
:return: pandas dataframe of the faces for one label
"""
l = []
for img, d in zip(images, coord_detect):
(x1, y1, x2, y2) = d
detected_face = dlib.rectangle(left=0, top=0, right=int(x2-x1), bottom=int(y2-y1))
pose_landmarks = face_pose_predictor(img, detected_face)
face_encoding = face_encoder.compute_face_descriptor(img, pose_landmarks, 1)
l.append(np.append(face_encoding, [label]))
return np.array(l)
def create_positive_set(pictures, coords, label=1):
"""
Create positive train set for one face from a list of three pictures of this face.
Data Augmentation on these three pictures to generate 10 pictures.
Encoding of the ten pictures
:param pictures: list of three full pictures
:param coords: list of the coordinates of the face in the first frame
:return: pandas dataframe of the faces for one person
"""
# original coordinate
x1, y1, x2, y2 = coords
# Load the three same faces
images = [pictures[j][y1:y2,x1:x2,:] for j in range(3)]
# triple each picture
images = [item for item in images for i in range(5)]
# Sometimes(0.5, ...) applies the given augmenter in 50% of all cases,
st = lambda aug: iaa.Sometimes(0.5, aug)
# add a random value from the range (-30, 30) to the first three channels and gaussian noise
aug = iaa.Sequential([
iaa.WithChannels( channels=[0, 1, 2], children=iaa.Add((-30, 30))),
st(iaa.AdditiveGaussianNoise(loc=0, scale=(0.0, 0.05*255), per_channel=0.5))])
images_aug = aug.augment_images(images)
# add the original frame
images_aug.append(pictures[0][y1:y2,x1:x2,:])
# encode each of 10 faces (of the same person)
coords_detect = [coords for k in range(len(images_aug))]
return pd.DataFrame(encoding_faces(images_aug, label, coords_detect))
def train_binclas(pics, detections, idx_detection):
"""
Create train set and traing a binary SVM to classify faces for one original
face (from frame 0)
"""
pos = create_positive_set(pics, detections[0][idx_detection])
# Choose 10 other detections from the first frame
neg_detect = np.array([k for i, k in enumerate(detections[0]) if i != idx_detection])
idx_neg = random.sample(range(len(neg_detect)), 10)
# Get face images for the 10 detections
img_neg = [pics[0][y1_:y2_,x1_:x2_,:] for (x1_, y1_, x2_, y2_) in neg_detect[idx_neg]]
# Encode each face
neg = pd.DataFrame(encoding_faces(img_neg, 0, neg_detect[idx_neg]))
# join positive and negative samples
df = pd.concat([pos, neg])
df = df.sample(len(df)).reset_index(drop=True)
y = df[128]
X = df.drop(128, axis=1)
# training
clf = SVC(C=1, kernel='linear', probability=True)
clf.fit(X, y)
# keeping 4th picture detections in the neighborhoud
x1, y1, x2, y2 = detections[0][idx_detection]
neigh_detect = [k for k in detections[::-1][0] if
np.abs(k[0]-x1) < 600 and
np.abs(k[1]-y1) < 600 and
np.abs(k[2]-x2) < 600 and
np.abs(k[3]-y2) < 600]
# Get face images to classify
img_neighb = [pics[::-1][0][y1_:y2_,x1_:x2_,:] for (x1_, y1_, x2_, y2_) in neigh_detect]
# Encode each face
neigh_detect_encodings = encoding_faces(img_neighb, -1, neigh_detect)[:,:128]
# compute distances
distances = clf.predict_proba(neigh_detect_encodings)
return neigh_detect, distances