-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
198 lines (161 loc) · 5.92 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import argparse
from torch.utils.data import DataLoader
import torch
import importlib
import functools
import os
from pathlib import Path
from dataset import LungDataset
from learning import Learning
from utils.helpers import load_yaml, init_seed, init_logger
from evaluation import dice_round_fn, search_thresholds
import transforms as T
def argparser():
parser = argparse.ArgumentParser(description="Lung Segmentation pipeline")
parser.add_argument("train_cfg", type=str, help="train config path")
return parser.parse_args()
def init_eval_fns(train_config):
score_threshold = train_config["EVALUATION"]["SCORE_THRESHOLD"]
area_threshold = train_config["EVALUATION"]["AREA_THRESHOLD"]
thr_search_list = train_config["EVALUATION"]["THRESHOLD_SEARCH_LIST"]
area_search_list = train_config["EVALUATION"]["AREA_SEARCH_LIST"]
local_metric_fn = functools.partial(
dice_round_fn, score_threshold=score_threshold, area_threshold=area_threshold
)
global_metric_fn = functools.partial(
search_thresholds, thr_list=thr_search_list, area_list=area_search_list
)
return local_metric_fn, global_metric_fn
def train(
train_config,
experiment_folder,
pipeline_name,
log_dir,
train_dataloader,
valid_dataloader,
local_metric_fn,
global_metric_fn,
):
fold_logger = init_logger(log_dir, "train.log")
best_checkpoint_folder = Path(
experiment_folder, train_config["CHECKPOINTS"]["BEST_FOLDER"]
)
best_checkpoint_folder.mkdir(exist_ok=True, parents=True)
checkpoints_history_folder = Path(
experiment_folder,
train_config["CHECKPOINTS"]["FULL_FOLDER"],
)
checkpoints_history_folder.mkdir(exist_ok=True, parents=True)
checkpoints_topk = train_config["CHECKPOINTS"]["TOPK"]
calculation_name = f"{pipeline_name}"
device = train_config["DEVICE"]
module = importlib.import_module(train_config["MODEL"]["PY"])
model_class = getattr(module, train_config["MODEL"]["CLASS"])
model = model_class(**train_config["MODEL"]["ARGS"])
if len(train_config["DEVICE_LIST"]) > 1:
model = torch.nn.DataParallel(model)
pretrained_model_config = train_config["MODEL"].get("PRETRAINED", False)
if pretrained_model_config:
loaded_pipeline_name = pretrained_model_config["PIPELINE_NAME"]
pretrained_model_path = Path(
pretrained_model_config["PIPELINE_PATH"],
pretrained_model_config["CHECKPOINTS_FOLDER"],
f"{loaded_pipeline_name}.pth",
)
fold_logger.info(f"load model from {pretrained_model_path}")
model.load_state_dict(torch.load(pretrained_model_path))
module = importlib.import_module(train_config["CRITERION"]["PY"])
loss_class = getattr(module, train_config["CRITERION"]["CLASS"])
loss_fn = loss_class(**train_config["CRITERION"]["ARGS"])
optimizer_class = getattr(torch.optim, train_config["OPTIMIZER"]["CLASS"])
optimizer = optimizer_class(model.parameters(), **train_config["OPTIMIZER"]["ARGS"])
scheduler_class = getattr(
torch.optim.lr_scheduler, train_config["SCHEDULER"]["CLASS"]
)
scheduler = scheduler_class(optimizer, **train_config["SCHEDULER"]["ARGS"])
n_epoches = train_config["EPOCHES"]
grad_clip = train_config["GRADIENT_CLIPPING"]
grad_accum = train_config["GRADIENT_ACCUMULATION_STEPS"]
early_stopping = train_config["EARLY_STOPPING"]
freeze_model = train_config["MODEL"]["FREEZE"]
Learning(
optimizer,
loss_fn,
device,
n_epoches,
scheduler,
freeze_model,
grad_clip,
grad_accum,
early_stopping,
calculation_name,
best_checkpoint_folder,
checkpoints_history_folder,
checkpoints_topk,
fold_logger,
).run_train(
model, train_dataloader, valid_dataloader, local_metric_fn, global_metric_fn
)
def main():
args = argparser()
config_folder = Path(args.train_cfg.strip("/"))
experiment_folder = config_folder.parents[0]
train_config = load_yaml(config_folder)
log_dir = Path(experiment_folder, train_config["LOGGER_DIR"])
log_dir.mkdir(exist_ok=True, parents=True)
main_logger = init_logger(log_dir, "train_main.log")
seed = train_config["SEED"]
init_seed(seed)
main_logger.info(train_config)
if "DEVICE_LIST" in train_config:
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(
map(str, train_config["DEVICE_LIST"])
)
pipeline_name = train_config["PIPELINE_NAME"]
img_size = train_config["IMAGE_SIZE"]
train_transform, valid_transform = T.transformA(img_size)
data_folder = train_config["DATA_DIRECTORY"]
mask_folder = train_config["MASK_DIRECTORY"]
num_workers = train_config["WORKERS"]
batch_size = train_config["BATCH_SIZE"]
local_metric_fn, global_metric_fn = init_eval_fns(train_config)
train_index = train_config["TRAIN_INDEX"]
masks = os.listdir(f"{mask_folder}ml/")
train_masks = masks[:train_index]
test_masks = masks[train_index:]
main_logger.info("Start training ...")
train_dataset = LungDataset(
train_masks,
data_folder=data_folder,
mask_folder=mask_folder,
mode="train",
transforms=train_transform,
)
train_dataloader = DataLoader(
dataset=train_dataset,
batch_size=batch_size,
num_workers=num_workers,
shuffle=True,
)
valid_dataset = LungDataset(
test_masks,
data_folder=data_folder,
mask_folder=mask_folder,
mode="test",
transforms=valid_transform,
)
valid_dataloader = DataLoader(
dataset=valid_dataset, batch_size=1, num_workers=num_workers, shuffle=False
)
train(
train_config,
experiment_folder,
pipeline_name,
log_dir,
train_dataloader,
valid_dataloader,
local_metric_fn,
global_metric_fn,
)
if __name__ == "__main__":
main()