forked from chelm/jsgeo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeojson-utils.js
338 lines (298 loc) · 10.8 KB
/
geojson-utils.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
(function () {
var gju = this.gju = {};
// Export the geojson object for **CommonJS**
if (typeof module !== 'undefined' && module.exports) {
module.exports = gju;
}
// adapted from http://www.kevlindev.com/gui/math/intersection/Intersection.js
gju.lineStringsIntersect = function (l1, l2) {
var intersects = [];
for (var i = 0; i <= l1.coordinates.length - 2; ++i) {
for (var j = 0; j <= l2.coordinates.length - 2; ++j) {
var a1 = {
x: l1.coordinates[i][1],
y: l1.coordinates[i][0]
},
a2 = {
x: l1.coordinates[i + 1][1],
y: l1.coordinates[i + 1][0]
},
b1 = {
x: l2.coordinates[j][1],
y: l2.coordinates[j][0]
},
b2 = {
x: l2.coordinates[j + 1][1],
y: l2.coordinates[j + 1][0]
},
ua_t = (b2.x - b1.x) * (a1.y - b1.y) - (b2.y - b1.y) * (a1.x - b1.x),
ub_t = (a2.x - a1.x) * (a1.y - b1.y) - (a2.y - a1.y) * (a1.x - b1.x),
u_b = (b2.y - b1.y) * (a2.x - a1.x) - (b2.x - b1.x) * (a2.y - a1.y);
if (u_b != 0) {
var ua = ua_t / u_b,
ub = ub_t / u_b;
if (0 <= ua && ua <= 1 && 0 <= ub && ub <= 1) {
intersects.push({
'type': 'Point',
'coordinates': [a1.x + ua * (a2.x - a1.x), a1.y + ua * (a2.y - a1.y)]
});
}
}
}
}
if (intersects.length == 0) intersects = false;
return intersects;
}
// adapted from http://jsfromhell.com/math/is-point-in-poly
gju.pointInPolygon = function (point, polygon) {
var x = point.coordinates[1],
y = point.coordinates[0],
poly = polygon.coordinates[0]; //TODO: support polygons with holes
for (var c = false, i = -1, l = poly.length, j = l - 1; ++i < l; j = i) {
var px = poly[i][1],
py = poly[i][0],
jx = poly[j][1],
jy = poly[j][0];
if (((py <= y && y < jy) || (jy <= y && y < py)) && (x < (jx - px) * (y - py) / (jy - py) + px)) {
c = [point];
}
}
return c;
}
gju.numberToRadius = function (number) {
return number * Math.PI / 180;
}
gju.numberToDegree = function (number) {
return number * 180 / Math.PI;
}
// written with help from @tautologe
gju.drawCircle = function (radiusInMeters, centerPoint, steps) {
var center = [centerPoint.coordinates[1], centerPoint.coordinates[0]],
dist = (radiusInMeters / 1000) / 6371,
// convert meters to radiant
radCenter = [gju.numberToRadius(center[0]), gju.numberToRadius(center[1])],
steps = steps || 15,
// 15 sided circle
poly = [[center[0], center[1]]];
for (var i = 0; i < steps; i++) {
var brng = 2 * Math.PI * i / steps;
var lat = Math.asin(Math.sin(radCenter[0]) * Math.cos(dist)
+ Math.cos(radCenter[0]) * Math.sin(dist) * Math.cos(brng));
var lng = radCenter[1] + Math.atan2(Math.sin(brng) * Math.sin(dist) * Math.cos(radCenter[0]),
Math.cos(dist) - Math.sin(radCenter[0]) * Math.sin(lat));
poly[i] = [];
poly[i][1] = gju.numberToDegree(lat);
poly[i][0] = gju.numberToDegree(lng);
}
return {
"type": "Polygon",
"coordinates": [poly]
};
}
// assumes rectangle starts at lower left point
gju.rectangleCentroid = function (rectangle) {
var bbox = rectangle.coordinates[0];
var xmin = bbox[0][0],
ymin = bbox[0][1],
xmax = bbox[2][0],
ymax = bbox[2][1];
var xwidth = xmax - xmin;
var ywidth = ymax - ymin;
return {
'type': 'Point',
'coordinates': [xmin + xwidth / 2, ymin + ywidth / 2]
};
}
// from http://www.movable-type.co.uk/scripts/latlong.html
gju.pointDistance = function (pt1, pt2) {
var lon1 = pt1.coordinates[0],
lat1 = pt1.coordinates[1],
lon2 = pt2.coordinates[0],
lat2 = pt2.coordinates[1],
dLat = gju.numberToRadius(lat2 - lat1),
dLon = gju.numberToRadius(lon2 - lon1),
a = Math.pow(Math.sin(dLat / 2), 2) + Math.cos(gju.numberToRadius(lat1))
* Math.cos(gju.numberToRadius(lat2)) * Math.pow(Math.sin(dLon / 2), 2),
c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
return (6371 * c) * 1000; // returns meters
},
// checks if geometry lies entirely within a circle
// works with Point, LineString, Polygon
gju.geometryWithinRadius = function (geometry, center, radius) {
if (geometry.type == 'Point') {
return gju.pointDistance(geometry, center) <= radius;
} else if (geometry.type == 'LineString' || geometry.type == 'Polygon') {
var point = {};
var coordinates;
if (geometry.type == 'Polygon') {
// it's enough to check the exterior ring of the Polygon
coordinates = geometry.coordinates[0];
} else {
coordinates = geometry.coordinates;
}
for (var i in coordinates) {
point.coordinates = coordinates[i];
if (gju.pointDistance(point, center) > radius) {
return false;
}
}
}
return true;
}
// adapted from http://paulbourke.net/geometry/polyarea/javascript.txt
gju.area = function (polygon) {
var area = 0;
// TODO: polygon holes at coordinates[1]
var points = polygon.coordinates[0];
var j = points.length - 1;
var p1, p2;
for (var i = 0; i < points.length; j = i++) {
var p1 = {
x: points[i][1],
y: points[i][0]
};
var p2 = {
x: points[j][1],
y: points[j][0]
};
area += p1.x * p2.y;
area -= p1.y * p2.x;
}
area /= 2;
return area;
},
// adapted from http://paulbourke.net/geometry/polyarea/javascript.txt
gju.centroid = function (polygon) {
var f, x = 0,
y = 0;
// TODO: polygon holes at coordinates[1]
var points = polygon.coordinates[0];
var j = points.length - 1;
var p1, p2;
for (var i = 0; i < points.length; j = i++) {
var p1 = {
x: points[i][1],
y: points[i][0]
};
var p2 = {
x: points[j][1],
y: points[j][0]
};
f = p1.x * p2.y - p2.x * p1.y;
x += (p1.x + p2.x) * f;
y += (p1.y + p2.y) * f;
}
f = gju.area(polygon) * 6;
return {
'type': 'Point',
'coordinates': [y / f, x / f]
};
},
gju.simplify = function (source, kink) { /* source[] array of geojson points */
/* kink in metres, kinks above this depth kept */
/* kink depth is the height of the triangle abc where a-b and b-c are two consecutive line segments */
kink = kink || 20;
source = source.map(function (o) {
return {
lng: o.coordinates[0],
lat: o.coordinates[1]
}
});
var n_source, n_stack, n_dest, start, end, i, sig;
var dev_sqr, max_dev_sqr, band_sqr;
var x12, y12, d12, x13, y13, d13, x23, y23, d23;
var F = (Math.PI / 180.0) * 0.5;
var index = new Array(); /* aray of indexes of source points to include in the reduced line */
var sig_start = new Array(); /* indices of start & end of working section */
var sig_end = new Array();
/* check for simple cases */
if (source.length < 3) return (source); /* one or two points */
/* more complex case. initialize stack */
n_source = source.length;
band_sqr = kink * 360.0 / (2.0 * Math.PI * 6378137.0); /* Now in degrees */
band_sqr *= band_sqr;
n_dest = 0;
sig_start[0] = 0;
sig_end[0] = n_source - 1;
n_stack = 1;
/* while the stack is not empty ... */
while (n_stack > 0) {
/* ... pop the top-most entries off the stacks */
start = sig_start[n_stack - 1];
end = sig_end[n_stack - 1];
n_stack--;
if ((end - start) > 1) { /* any intermediate points ? */
/* ... yes, so find most deviant intermediate point to
either side of line joining start & end points */
x12 = (source[end].lng() - source[start].lng());
y12 = (source[end].lat() - source[start].lat());
if (Math.abs(x12) > 180.0) x12 = 360.0 - Math.abs(x12);
x12 *= Math.cos(F * (source[end].lat() + source[start].lat())); /* use avg lat to reduce lng */
d12 = (x12 * x12) + (y12 * y12);
for (i = start + 1, sig = start, max_dev_sqr = -1.0; i < end; i++) {
x13 = source[i].lng() - source[start].lng();
y13 = source[i].lat() - source[start].lat();
if (Math.abs(x13) > 180.0) x13 = 360.0 - Math.abs(x13);
x13 *= Math.cos(F * (source[i].lat() + source[start].lat()));
d13 = (x13 * x13) + (y13 * y13);
x23 = source[i].lng() - source[end].lng();
y23 = source[i].lat() - source[end].lat();
if (Math.abs(x23) > 180.0) x23 = 360.0 - Math.abs(x23);
x23 *= Math.cos(F * (source[i].lat() + source[end].lat()));
d23 = (x23 * x23) + (y23 * y23);
if (d13 >= (d12 + d23)) dev_sqr = d23;
else if (d23 >= (d12 + d13)) dev_sqr = d13;
else dev_sqr = (x13 * y12 - y13 * x12) * (x13 * y12 - y13 * x12) / d12; // solve triangle
if (dev_sqr > max_dev_sqr) {
sig = i;
max_dev_sqr = dev_sqr;
}
}
if (max_dev_sqr < band_sqr) { /* is there a sig. intermediate point ? */
/* ... no, so transfer current start point */
index[n_dest] = start;
n_dest++;
} else { /* ... yes, so push two sub-sections on stack for further processing */
n_stack++;
sig_start[n_stack - 1] = sig;
sig_end[n_stack - 1] = end;
n_stack++;
sig_start[n_stack - 1] = start;
sig_end[n_stack - 1] = sig;
}
} else { /* ... no intermediate points, so transfer current start point */
index[n_dest] = start;
n_dest++;
}
}
/* transfer last point */
index[n_dest] = n_source - 1;
n_dest++;
/* make return array */
var r = new Array();
for (var i = 0; i < n_dest; i++)
r.push(source[index[i]]);
return r.map(function (o) {
return {
type: "Point",
coordinates: [o.lng, o.lat]
}
});
}
// http://www.movable-type.co.uk/scripts/latlong.html#destPoint
gju.destinationPoint = function (pt, brng, dist) {
dist = dist/6371; // convert dist to angular distance in radians
brng = gju.numberToRadius(brng);
var lat1 = gju.numberToRadius(pt.coordinates[0]);
var lon1 = gju.numberToRadius(pt.coordinates[1]);
var lat2 = Math.asin( Math.sin(lat1)*Math.cos(dist) +
Math.cos(lat1)*Math.sin(dist)*Math.cos(brng) );
var lon2 = lon1 + Math.atan2(Math.sin(brng)*Math.sin(dist)*Math.cos(lat1),
Math.cos(dist)-Math.sin(lat1)*Math.sin(lat2));
lon2 = (lon2+3*Math.PI) % (2*Math.PI) - Math.PI; // normalise to -180..+180º
return {
'type': 'Point',
'coordinates': [gju.numberToDegree(lat2), gju.numberToDegree(lon2)]
};
};
})();