forked from Pymol-Scripts/Pymol-script-repo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaKMT_Lys_pred.py
336 lines (294 loc) · 15.5 KB
/
aKMT_Lys_pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
'''
Described at PyMOL wiki:
http://www.pymolwiki.org/index.php/aAKMT_Lys_pred
Authors : Troels Schwarz-Linnet
Program : aKMT_Lys_pred
Date : June 2017
aKMT_Lys_pred -- Help predicting lysine methylation
'''
# Internal pymol import
from pymol import cmd
from pymol import stored
# From Pymol-script repo: https://pymolwiki.org/index.php/Findseq
import findseq
aa_1_3 = {'A': 'ALA', 'C': 'CYS', 'D': 'ASP', 'E': 'GLU', 'F': 'PHE', 'G': 'GLY', 'H': 'HIS', 'I': 'ILE', 'K': 'LYS',
'L': 'LEU', 'M': 'MET', 'N': 'ASN', 'P': 'PRO', 'Q': 'GLN', 'R': 'ARG', 'S': 'SER', 'T': 'THR', 'V': 'VAL',
'W': 'TRP', 'Y': 'TYR'}
aa_3_1 = {'ALA': 'A', 'CYS': 'C', 'ASP': 'D', 'GLU': 'E', 'PHE': 'F', 'GLY': 'G', 'HIS': 'H', 'ILE': 'I',
'LYS': 'K', 'LEU': 'L', 'MET': 'M', 'ASN': 'N', 'PRO': 'P', 'GLN': 'Q', 'ARG': 'R', 'SER': 'S',
'THR': 'T', 'VAL': 'V', 'TRP': 'W', 'TYR': 'Y'}
aa_types = {'A': 'hydrophobic', 'C': 'cysteine', 'D': 'negative', 'E': 'negative', 'F': 'aromatic', 'G': 'glycine', 'H': 'polar',
'I': 'hydrophobic', 'K': 'positive', 'L': 'hydrophobic', 'M': 'hydrophobic', 'N': 'polar', 'P': 'proline', 'Q': 'polar',
'R': 'positive', 'S': 'polar', 'T': 'polar', 'V': 'hydrophobic', 'W': 'aromatic', 'Y': 'aromatic'}
def get_resis_from_resn(target_sel="all", resn="lys", atom_name="CA", verb=True):
# Make uppercase
resn = resn.upper()
# Check if one letter residue name
if len(resn) == 1:
resn = aa_1_3[resn]
atom_name = atom_name.upper()
# Prepare for storing and make expression
stored.infolist = []
# resv (int): the residue identifier (residue number), ss (str): secondary structure, name (str): the atom name
expression = "stored.infolist.append([model, chain, resv, resn, ss, name])"
# Iterate over selection, storing info
cmd.iterate(target_sel, expression)
# Store info
return_list_resn_resi = []
return_list_resn_resi_sel = []
group = "Find_%s_%s"%(resn, target_sel)
for info in stored.infolist:
cur_model, cur_chain, cur_resv, cur_resn, cur_ss, cur_name = info
if cur_resn == resn and cur_name == atom_name:
# Convert residue name to one letter
cur_aa_3_1 = aa_3_1[resn]
# Do selection and group
#sel_str = "/%s/%s//%s"%(cur_model, cur_chain, cur_resv)
sel_str = "%s and chain %s and resi %s"%(cur_model, cur_chain, cur_resv)
resn_resi = "%s%s"%(cur_aa_3_1, cur_resv)
sel_str_text = "%s_%s"%(group, resn_resi)
cmd.select(sel_str_text, sel_str)
# Store
return_list_resn_resi.append(resn_resi)
return_list_resn_resi_sel.append(sel_str)
# If verbose
if verb:
print("%s , sel: %s"%(resn_resi, sel_str))
# Group selections
cmd.group(group, "%s_*"%group)
cmd.select("%s_sel"%group, "%s_*"%group)
cmd.show("lines", group)
# If verbose
if verb:
print("\nThere are %i hits, in target_sel=%s, with resn=%s\n"%(len(return_list_resn_resi), target_sel, resn))
return return_list_resn_resi, return_list_resn_resi_sel
cmd.extend("get_resis_from_resn", get_resis_from_resn)
def match_peptides(target_sel="all", peptides=[], verb=True):
if type(peptides) != list:
print("\nERROR: The peptides should be supplied as a list\n")
return
# Store info
return_list_resn_resi = []
return_list_resn_resi_sel = []
group = "Match_%s"%(target_sel)
for peptide in peptides:
sequence, modification = peptide
sequence = sequence.strip()
modification = modification.strip()
# Check input
if modification[0].isdigit() or not modification[1:].isdigit():
print("\nERROR: The modificaions should be in format of ex: K10\n")
return
#sel_str = "findseq"
sel_str = sequence
findseq.findseq(needle=sequence, haystack=target_sel, selName=sel_str)
# Limit the selection to atom name CA
atom_name = "CA"
sel_str_atom = "%s_%s"%(sel_str, atom_name)
# Make a sub selection with atom name, and delete old selection
cmd.select(sel_str_atom, "%s and name %s"%(sel_str, atom_name))
cmd.delete(sel_str)
# Iterate
stored.infolist = []
# resv (int): the residue identifier (residue number), ss (str): secondary structure, name (str): the atom name
expression = "stored.infolist.append([model, chain, resv, resn, ss, name])"
# Iterate over selection, storing info
cmd.iterate(sel_str_atom, expression)
cmd.delete(sel_str_atom)
# Check for results. Is there any found?
if len(stored.infolist) == 0:
print("\n#####################################################################")
print("ERROR: The following sequence cannot be found: %s %s"%(sequence, modification))
print("\n#####################################################################\n")
continue
# Find resn and index for search. This is for the peptide
resn = modification[0].upper()
index = int(modification[1:]) - 1
# This is for the mathc selection
peptide_match_modification = stored.infolist[index]
peptide_match_modification_model, peptide_match_modification_chain, peptide_match_modification_resv, peptide_match_modification_resn, \
peptide_match_modification_ss, peptide_match_modification_name = peptide_match_modification
# Convert to single aa
peptide_match_modification_resn = aa_3_1[peptide_match_modification_resn]
# Convert ss, secondary structure, if ss=S (Sheet), or ss='' (Not Helix or Sheet)
if peptide_match_modification_ss == '':
peptide_match_modification_ss = 'L'
# Check if the residue type match
if peptide_match_modification_resn != resn:
print("\n#####################################################################")
print("ERROR: The match is not equal: %s=%s != %s"%(modification[0], resn, peptide_match_modification_resn))
print("\n#####################################################################\n")
continue
# Do selection and group
#peptide_match_modification_sel_str = "/%s/%s//%s"%(peptide_match_modification_model, peptide_match_modification_chain, peptide_match_modification_resv)
peptide_match_modification_sel_str = "%s and chain %s and resi %s"%(peptide_match_modification_model, peptide_match_modification_chain, peptide_match_modification_resv)
peptide_match_modification_resn_resi = "%s%s"%(peptide_match_modification_resn, peptide_match_modification_resv)
peptide_match_modification_sel_str_text = "%s_%s_%s_%s"%(group, peptide_match_modification_resn_resi, modification, sequence)
cmd.select(peptide_match_modification_sel_str_text, peptide_match_modification_sel_str)
# Store
if peptide_match_modification_resn_resi not in return_list_resn_resi:
return_list_resn_resi.append(peptide_match_modification_resn_resi)
return_list_resn_resi_sel.append(peptide_match_modification_sel_str)
# Print
if verb:
print("The peptide=%s, with modification=%s, corresponds to resi=%s"%(sequence, modification, peptide_match_modification_resn_resi))
# Group selections
cmd.group(group, "%s_*"%group)
cmd.select("%s_sel"%group, "%s_*"%group)
cmd.show("lines", group)
# If verbose
if verb:
print("\nThere are %i uniq matches, in target_sel=%s\n"%(len(return_list_resn_resi), target_sel))
return return_list_resn_resi, return_list_resn_resi_sel
cmd.extend("match_peptides", match_peptides)
def get_resi_stats(target_sel="all", residues=[], group_id="X", atom="NZ", atom_dist=8, resi_n_term=8, resi_c_term=8, verb=True):
# The distance in angstrom to look for
var_dist = 12
if type(residues) != list:
print("\nERROR: The residues should be supplied as a list\n")
return
# Get current setting
ini_setting = cmd.get("dot_solvent")
ini_setting2 = cmd.get("dot_density")
# Increasing dot_density makes calculation slower, but not a big difference
#cmd.set('dot_density', 3)
# Make groups
group = "Stats_%s_%s" % (target_sel, group_id)
group_atom = "Stats_%s_%s_%s" % (atom, target_sel, group_id)
group_chain = "Stats_%s_%s_%s" % ("chain", target_sel, group_id)
group_3dweb = "Stats_%s_%s_%s" % ("3dweb", target_sel, group_id)
# Make list for storing
slist = []
# Make file for writing
wfileweblogo = open("resi_stats_weblogo_%s_%s.txt" % (target_sel, group_id), 'w')
for residue in residues:
residue = residue.strip()
resn_1 = residue[0].upper()
resn_3 = aa_1_3[resn_1]
resi = int(residue[1:])
# Check input
if resn_1.isdigit():
print("\nERROR: The residue should be in format of ex: K10\n")
return
# Do selection and group
sel_str = "%s and resn %s and resi %s" % (target_sel, resn_3, resi)
resn_resi = "%s%s" % (resn_1, resi)
sel_str_text = "%s_%s_%s" % (target_sel, group_id, resn_resi)
cmd.select(sel_str_text, sel_str)
# Make quick test, to see if the atom is there
sel_str_atom_test = "%s and name %s" % (sel_str_text, atom)
test_str = "Test_nr_atoms"
cmd.select(test_str, sel_str_atom_test)
nr_test = cmd.count_atoms(test_str)
if nr_test != 1:
print("\nERROR: The selection '%s', has only nr of atoms:%s. SKIPPING"%(sel_str_atom_test, nr_test))
continue
# MSA = Molecular Surface Area
cmd.set("dot_solvent", "off")
MSA = cmd.get_area(sel_str)
# SASA = Solvent Accessible Surface Area
cmd.set("dot_solvent", "on")
SASA = cmd.get_area(sel_str)
# Get the chain residues
chain = "."*(resi_n_term + resi_c_term + 1)
chain_sec = "."*(resi_n_term + resi_c_term + 1)
resi_sel_min = resi-resi_n_term
if resi_sel_min < 1:
resi_sel_min = 1
resi_sel_max = resi+resi_c_term
resi_sel = "%i-%i" % (resi_sel_min, resi_sel_max)
# Make selection
sel_str_chain = "%s and resi %s and name CA" % (target_sel, resi_sel)
sel_str_text_chain = "%s_%s_%s_%s" % ("chain", target_sel, group_id, resn_resi)
cmd.select(sel_str_text_chain, sel_str_chain)
# Get the chain info
stored.list_chain = []
expression_chain="stored.list_chain.append([resi, resn, name, ss])"
cmd.iterate(sel_str_text_chain, expression_chain)
for chain_resi_info in stored.list_chain:
chain_resi, chain_resn, chain_name, chain_ss = chain_resi_info
# Convert ss, secondary structure, if ss=S (Sheet), or ss='' (Not Helix or Sheet)
if chain_ss == '':
chain_ss = 'L'
chain_resi = int(chain_resi)
try:
chain_resn_1 = aa_3_1[chain_resn]
except KeyError:
chain_resn_1 = "."
# Calculate index
index = resi_n_term - (resi - chain_resi)
# Replace in string for residue names
chain = chain[:index] + chain_resn_1 + chain[index + 1:]
# Replace in string for secondary structyre
chain_sec = chain_sec[:index] + chain_ss + chain_sec[index + 1:]
# Get number of neighbour atoms
# Make selection for NZ atoms
sel_str_atom = "%s and name %s" % (sel_str_text, atom)
sel_str_text_atom = "%s_%s_%s_%s" % (atom, target_sel, group_id, resn_resi)
cmd.select(sel_str_text_atom, sel_str_atom)
# Make selection around NZ atom for fixed distance, and count
sel_str_atom_around = "%s around %s and not (%s)" % (sel_str_text_atom, atom_dist, sel_str)
sel_str_text_atom_around = "%s_around_%s_%s_%s" % (atom, target_sel, group_id, resn_resi)
cmd.select(sel_str_text_atom_around, sel_str_atom_around)
# Count around
stored.list = []
expression="stored.list.append([resi, resn, name])"
cmd.iterate(sel_str_text_atom_around, expression)
nr_atoms_around = len(stored.list)
# Make selection around NZ atom for variable distance
#for i in range(2, var_dist+1):
for i in range(2, var_dist+1, 2):
dist = i
dist_pre = dist - 1
# Select for an angstrom shorter
sel_str_atom_3dweb_pre = "byres %s around %s" % (sel_str_text_atom, dist_pre)
sel_str_text_atom_3dweb_pre = "%s_3dweb_pre_%s_%s_%s_%s_%s" % (atom, target_sel, group_id, resn_resi, dist, dist_pre)
cmd.select(sel_str_text_atom_3dweb_pre, sel_str_atom_3dweb_pre)
# Select at distance
sel_str_atom_3dweb_post = "byres %s around %s" % (sel_str_text_atom, dist)
sel_str_text_atom_3dweb_post = "%s_3dweb_post_%s_%s_%s_%s_%s" % (atom, target_sel, group_id, resn_resi, dist, dist)
cmd.select(sel_str_text_atom_3dweb_post, sel_str_atom_3dweb_post)
# Make selection for uniq residues with shell
sel_str_text_atom_3dweb_sel = "%s_3dweb_sel_%s_%s_%s_%s" % (atom, target_sel, group_id, resn_resi, dist)
cmd.select(sel_str_text_atom_3dweb_sel, "(%s and not %s) and name CA" % (sel_str_atom_3dweb_post, sel_str_atom_3dweb_pre))
# delete
cmd.delete(sel_str_text_atom_3dweb_pre)
cmd.delete(sel_str_text_atom_3dweb_post)
# Loop through selecion
stored.list_3dweb = []
expression_3dweb="stored.list_3dweb.append([resi, resn, name])"
cmd.iterate(sel_str_text_atom_3dweb_sel, expression_3dweb)
for web3d_residues in stored.list_3dweb:
web3d_resi, web3d_resn, web3d_name = web3d_residues
try:
web3d_resn_1 = aa_3_1[web3d_resn]
except KeyError:
web3d_resn_1 = "."
# Write http://weblogo.threeplusone.com/ file
FASTA_text = "> %s %s %s %s %s, dist=%s resi=%s resn=%s %s" %(target_sel, group_id, resi, resn_1, resn_3, dist, web3d_resi, web3d_resn_1, web3d_resn)
weblogo = "."*(var_dist)
weblogo = weblogo[:i-1] + web3d_resn_1 + weblogo[i:]
# Write
wfileweblogo.write(FASTA_text + "\n")
wfileweblogo.write(weblogo + "\n")
# Store info
slist.append([target_sel, group_id, resn_resi, resn_1, resi, MSA, SASA, nr_atoms_around, chain, chain_sec])
# Group selections
cmd.group(group, "%s_%s_*" % (target_sel, group_id))
cmd.select("%s_sel"%group, "%s_%s_*" % (target_sel, group_id))
# Group around
cmd.group(group_chain, "%s_%s_%s*" % ("chain",target_sel, group_id) )
cmd.group(group_atom, "%s_%s_%s_*" % (atom, target_sel, group_id))
cmd.group(group_atom, "%s_around_%s_%s_*" % (atom, target_sel, group_id))
cmd.group(group_3dweb, "%s_3dweb_sel_%s_%s_*" % (atom, target_sel, group_id))
# Write output
wfile = open("resi_stats_%s_%s.csv" % (target_sel, group_id), 'w')
wfile.write("target_sel;group_id;resn_resi;resn;resi;MSA;SASA;nr_atoms_around;chain;chain_sec"+"\n")
for i in slist:
wfile.write("%s;%s;%s;%s;%i;%3.0f;%3.0f;%i;%s;%s" % (i[0], i[1], i[2], i[3], i[4], i[5], i[6], i[7], i[8], i[9]) + "\n")
wfile.close()
wfileweblogo.close()
# Back to before
cmd.set("dot_solvent", ini_setting)
cmd.set('dot_density', ini_setting2)
cmd.extend("match_peptides", match_peptides)