diff --git a/week11/week11.ipynb b/week11/week11.ipynb new file mode 100644 index 0000000..5b175ec --- /dev/null +++ b/week11/week11.ipynb @@ -0,0 +1,2798 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "source": [ + "# Continual learning: Overcoming catastophic forgetting with memory replay\n", + "\n", + "In this exercise class we'll implement an experiment to measure catastrophic forgetting in a neural network trained on MNIST. We will then fix/reduce the catastrophic forgetting by implementing a simple memory replay strategy." + ], + "metadata": { + "id": "lDTvzuBtNg1X" + } + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Mzy1CzlGQvAk" + }, + "source": [ + "The following figure highlights the setup of the dataset and is taken from [van den Ven & Tolias, 2019](https://arxiv.org/pdf/1904.07734.pdf):\n", + "\n", + "![image.png]()" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "MN_GMVuyPD9D" + }, + "outputs": [], + "source": [ + "\"\"\"\n", + "Code adapted from the torchvision MNIST example:\n", + "https://github.com/pytorch/examples/blob/main/mnist/main.py\n", + "\n", + "BSD 3-Clause License\n", + "\n", + "Copyright (c) 2017, \n", + "All rights reserved.\n", + "\n", + "Redistribution and use in source and binary forms, with or without\n", + "modification, are permitted provided that the following conditions are met:\n", + "\n", + "* Redistributions of source code must retain the above copyright notice, this\n", + " list of conditions and the following disclaimer.\n", + "\n", + "* Redistributions in binary form must reproduce the above copyright notice,\n", + " this list of conditions and the following disclaimer in the documentation\n", + " and/or other materials provided with the distribution.\n", + "\n", + "* Neither the name of the copyright holder nor the names of its\n", + " contributors may be used to endorse or promote products derived from\n", + " this software without specific prior written permission.\n", + "\n", + "THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS \"AS IS\"\n", + "AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE\n", + "IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE\n", + "DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE\n", + "FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL\n", + "DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR\n", + "SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER\n", + "CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,\n", + "OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE\n", + "OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\n", + "\"\"\"\n", + "\n", + "import argparse\n", + "import torch\n", + "import torch.nn as nn\n", + "import torch.nn.functional as F\n", + "import torch.optim as optim\n", + "from torchvision import datasets, transforms\n", + "from torch.optim.lr_scheduler import StepLR" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "Bu5GtxDyPMW5" + }, + "outputs": [], + "source": [ + "# Network implementation -- bonus exercise: Modify the network architecture,\n", + "# and study the effect on the training results.\n", + "\n", + "class Net(nn.Module):\n", + "\n", + " def __init__(self):\n", + " super(Net, self).__init__()\n", + " self.conv1 = nn.Conv2d(1, 32, 3, 1)\n", + " self.conv2 = nn.Conv2d(32, 64, 3, 1)\n", + " self.dropout1 = nn.Dropout(0.25)\n", + " self.dropout2 = nn.Dropout(0.5)\n", + " self.fc1 = nn.Linear(9216, 128)\n", + " self.fc2 = nn.Linear(128, 10)\n", + "\n", + " def forward(self, x):\n", + " x = self.conv1(x)\n", + " x = F.relu(x)\n", + " x = self.conv2(x)\n", + " x = F.relu(x)\n", + " x = F.max_pool2d(x, 2)\n", + " x = self.dropout1(x)\n", + " x = torch.flatten(x, 1)\n", + " x = self.fc1(x)\n", + " x = F.relu(x)\n", + " x = self.dropout2(x)\n", + " x = self.fc2(x)\n", + " output = F.log_softmax(x, dim=1)\n", + " return output" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "FljvS0QcPPTg" + }, + "outputs": [], + "source": [ + "# Exercise: Adapt the following function and store part of the images\n", + "# presented during training in a replay buffer. Replay these images\n", + "# during the training step.\n", + "\n", + "def train(args, model, device, train_loader, optimizer, epoch, buffer = None):\n", + " model.train()\n", + "\n", + " for batch_idx, (data, target) in enumerate(train_loader):\n", + "\n", + " ### START SOLUTION ###\n", + " # We append images and labels from the first training batch\n", + " # to our buffer. You can extend this strategy based on how\n", + " # many images you choose to store in the buffer.\n", + " if buffer is not None and batch_idx == 0:\n", + " if buffer is not None:\n", + " images, targets = next(iter(train_loader))\n", + " buffer.add(images, targets)\n", + " ### END SOLUTION ###\n", + "\n", + "\n", + " data, target = data.to(device), target.to(device)\n", + "\n", + " optimizer.zero_grad()\n", + " output = model(data)\n", + " loss = F.nll_loss(output, target)\n", + " loss.backward()\n", + " optimizer.step()\n", + "\n", + " ### START SOLUTION ###\n", + " # A simple strategy for overcoming forgetting is to retrieve images\n", + " # from the buffer (here: one image per class) and perform a gradient\n", + " # step on these images along with every incoming new batch.\n", + " if buffer is not None and len(buffer) > 0:\n", + " replayed_images, replayed_targets = buffer.get()\n", + " replayed_images = replayed_images.to(device)\n", + " replayed_targets = replayed_targets.to(device)\n", + " optimizer.zero_grad()\n", + " output = model(replayed_images)\n", + " loss = F.nll_loss(output, replayed_targets)\n", + " loss.backward()\n", + " optimizer.step()\n", + " ### END SOLUTION ###\n", + "\n", + " if batch_idx % args.log_interval == 0:\n", + " print('Train Epoch: {} [{}/{} ({:.0f}%)]\\tLoss: {:.6f}'.format(\n", + " epoch, batch_idx * len(data), len(train_loader.dataset),\n", + " 100. * batch_idx / len(train_loader), loss.item()))\n", + " if args.dry_run:\n", + " break" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "id": "QXPgWNCRPRd4" + }, + "outputs": [], + "source": [ + "# The test routine was adapted from the original implementation and now computes\n", + "# the classification probabilities per class instead of an average. This allows to\n", + "# later assess the effect of catastrophic forgetting. No adaptations in this function\n", + "# are required for the exercise.\n", + "\n", + "import collections\n", + "\n", + "def test(model, device, test_loader):\n", + " model.eval()\n", + " test_loss = 0\n", + " correct_by_class = collections.Counter()\n", + " count_by_class = collections.Counter()\n", + " with torch.no_grad():\n", + " for data, target in test_loader:\n", + " data, target = data.to(device), target.to(device)\n", + " output = model(data)\n", + " test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss\n", + " pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability\n", + " correct = pred.eq(target.view_as(pred)).float()\n", + " for class_ in range(10):\n", + " idc = (target == class_)\n", + " correct_by_class[class_] += correct[idc].sum().item()\n", + " count_by_class[class_] += idc.sum().item()\n", + "\n", + " test_loss /= len(test_loader.dataset)\n", + " test_acc = correct / len(test_loader.dataset)\n", + "\n", + " print(f'\\nTest set: Average loss: {test_loss:.4f}')\n", + " result = {}\n", + " for class_ in range(10):\n", + " acc = correct_by_class[class_] / count_by_class[class_]\n", + " result[class_] = acc\n", + " print(\n", + " f\"Class {class_} accuracy: \"\n", + " f\"{correct_by_class[class_]}/{count_by_class[class_]}\"\n", + " f\"({acc*100:.0f}%)\"\n", + " )\n", + "\n", + " return result" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "UsdJlkLkRRbp" + }, + "outputs": [], + "source": [ + "# Exercise: Adapt the dataset class \"MNISTContinualLearning\" for the experiment\n", + "# outlined in the introduction text. The class needs to support indexing of the\n", + "# dataset based on the provided list of classes.\n", + "\n", + "def identity(x):\n", + " return\n", + "\n", + "class MNISTContinualLearning(datasets.MNIST):\n", + "\n", + " def __init__(self, *args, classes=list(range(10)), **kwargs):\n", + "\n", + " # This inherits from the base dataset\n", + " super().__init__(*args, **kwargs)\n", + "\n", + " if len(classes) < 2:\n", + " raise ValueError(f\"Need at least two classes, but got {len(classes)}\")\n", + "\n", + " # Add code for filtering the dataset here. You need to adapt\n", + " # the \"data\" and \"targets\" attribute of the dataset. The \"data\"\n", + " # attribute stores the images as a numpy array, while the \"targets\"\n", + " # attributes stores the labels as a numpy array.\n", + " # You can override the existing attributes.\n", + " #\n", + " # self.data = ...\n", + " # self.targets = ...\n", + " \n", + " ### START SOLUTION ###\n", + " idc = None\n", + " for class_ in classes:\n", + " if idc is None:\n", + " idc = self.targets == class_\n", + " idc |= self.targets == class_\n", + "\n", + " self.data = self.data[idc]\n", + " self.targets = self.targets[idc]\n", + " ### END SOLUTION ###\n", + "\n", + "\n", + "def test_dataset():\n", + " transform=transforms.Compose([\n", + " transforms.ToTensor(),\n", + " transforms.Normalize((0.1307,), (0.3081,))\n", + " ])\n", + " dataset1 = MNISTContinualLearning('../data', train=True, download=True, transform=transform, classes = [0, 5])\n", + " assert len(dataset1) == 11344\n", + "\n", + "test_dataset()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "EDwtthksNUpw" + }, + "outputs": [], + "source": [ + "# To implement memory replay, add additional code (functions or classes)\n", + "# to this cell. One possible solution is to implement a \"Buffer\" class\n", + "# that allows to add images into memory, and allows to retrieve the stored\n", + "# images and labels for training the model.\n", + "#\n", + "# The buffer is typically memory constrained, and there are multiple ways\n", + "# to efficiently compress the individual elements present in the buffer.\n", + "# Think about different ways of reducing the storage required by your buffer\n", + "# class, and explore which of them is most effective at mitigating catastophic\n", + "# forgetting.\n", + "\n", + "\n", + "### START SOLUTION ###\n", + "\n", + "class Buffer(nn.Module):\n", + "\n", + " def __init__(self):\n", + " self.buffer = {}\n", + " \n", + " def add(self, images, targets):\n", + " for class_ in targets.unique():\n", + " idc = targets == class_\n", + " self.buffer[class_] = images[idc][0]\n", + "\n", + " def get(self):\n", + " assert len(self) > 0\n", + " keys = list(self.buffer.keys())\n", + " targets = torch.tensor(keys)\n", + " images = torch.stack([self.buffer[k] for k in keys], dim = 0)\n", + " assert len(targets) == len(images)\n", + " return images, targets\n", + "\n", + " def __len__(self):\n", + " return sum(len(v) if v is not None else 0 for v in self.buffer.values())\n", + " \n", + "### END SOLUTION ###" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "u2xvlBoZPTyx" + }, + "outputs": [], + "source": [ + "# Adapt the main training loop to work with the functions you defined above.\n", + "\n", + "def train_model(args, model, phase, replay_buffer = [], history = [], buffer = None):\n", + " use_cuda = not args.no_cuda and torch.cuda.is_available()\n", + " device = torch.device(\"cuda\" if use_cuda else \"cpu\")\n", + "\n", + " torch.manual_seed(args.seed)\n", + "\n", + " train_kwargs = {'batch_size': args.batch_size}\n", + " test_kwargs = {'batch_size': args.test_batch_size}\n", + " if use_cuda:\n", + " cuda_kwargs = {'num_workers': 1,\n", + " 'pin_memory': True,\n", + " 'shuffle': True}\n", + " train_kwargs.update(cuda_kwargs)\n", + " test_kwargs.update(cuda_kwargs)\n", + "\n", + " transform=transforms.Compose([\n", + " transforms.ToTensor(),\n", + " transforms.Normalize((0.1307,), (0.3081,))\n", + " ])\n", + " \n", + " # You need to replace the original MNIST dataset here by the continual\n", + " # learning dataset we implemented in the previous cell. Make sure to\n", + " # pass the list of classes selected for training in args.train_classes.\n", + " \n", + " ### START SOLUTION ###\n", + " # We added the revised MNIST class here, which takes the same arguments\n", + " # as the original class, but additionally takes a \"classes\" argument which\n", + " # specifies the subselection of classes to consider during this training\n", + " # phase.\n", + " dataset1 = MNISTContinualLearning('../data', train=True, download=True,\n", + " transform=transform, classes=args.train_classes)\n", + " ### END SOLUTION ###\n", + " dataset2 = datasets.MNIST('../data', train=False, download=True,\n", + " transform=transform)\n", + " train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs)\n", + " test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)\n", + "\n", + " model = model.to(device)\n", + " optimizer = optim.Adadelta(model.parameters(), lr=args.lr)\n", + " scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)\n", + "\n", + " for epoch in range(1, args.epochs + 1):\n", + " ### START SOLUTION ###\n", + " # We additionally pass the \"buffer\" class here to collect training\n", + " # images for later memory replay.\n", + " # \n", + " # Original content:\n", + " # train(args, model, device, train_loader, optimizer, epoch)\n", + " train(args, model, device, train_loader, optimizer, epoch, buffer)\n", + " ### END SOLUTION ###\n", + " test_results = test(model, device, test_loader)\n", + " test_results[\"phase\"] = phase\n", + " history.append(test_results)\n", + " scheduler.step()\n", + "\n", + " return history\n" + ] + }, + { + "cell_type": "code", + "source": [ + "# We now define the experiment setup.\n", + "# Without modifications to the code, the following will simply train an MNIST\n", + "# network multiple times, and reach an accuracy of >99% on the test set.\n", + "#\n", + "# The result will be modified in two steps:\n", + "#\n", + "# -- first, after implementing the MNISTContinualLearning dataset, you will be\n", + "# able to observe catastrophic forgetting: Training on a new task (specified)\n", + "# by the \"phase\" and \"config.train_classes\" variables will make the network\n", + "# forget the previously learned tasks, and you will observe a performance drop.\n", + "#\n", + "# -- second, after implementing the catastrophic forgetting network, you will\n", + "# fix the catastrophic forgetting my implementing a simple memory buffer. This\n", + "# buffer will keep some of the images seen in each individual training phase,\n", + "# and add them to the training in each subsequent phase. This task is open-ended\n", + "# and different strategies exist. They will differ in terms of memory efficiency\n", + "# and performance.\n", + "\n", + "# You should adapt the train config to each experiment setup and especially test the\n", + "# effects of taking different values for the number of epochs (per phase of the training)\n", + "# and the learning rate used.\n", + "config = argparse.Namespace(\n", + " batch_size=64, \n", + " test_batch_size=1000, \n", + " epochs=3, \n", + " lr=0.01,\n", + " gamma=0.7,\n", + " no_cuda=False,\n", + " dry_run=False,\n", + " seed=1,\n", + " log_interval=10,\n", + " save_model=False\n", + ")\n", + "\n", + "def train_regular_mnist():\n", + " model = Net()\n", + " history = []\n", + "\n", + " config.train_classes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n", + " train_model(config, model, phase = \"baseline\", history = history)\n", + " return history\n", + "\n", + "# Uncomment to train\n", + "#history_regular_mnist = train_regular_mnist()\n", + "#history_regular_mnist" + ], + "metadata": { + "id": "SK-GNifLPN2S" + }, + "execution_count": 18, + "outputs": [] + }, + { + "cell_type": "code", + "source": [ + "# Exercise 1: Implement an experiment setup that measures catastrophic forgetting while\n", + "# training in a task-incremental way on digits (0,1), (2,3), ..., (8, 9). After finishing\n", + "# training, measure the performance on the first task again.\n", + "#\n", + "# Implementation requires to fill in code further up in this notebook. You can visualize\n", + "# the result using the code further below.\n", + "\n", + "### START SOLUTION ###\n", + "# In this first part, we implement an experiment setup to measure catastrophic forgetting.\n", + "# We will subsequently train on pairs of classes, (0,1), then (2,3), etc., and in the end\n", + "# revisit the first task to measure if there was any forward transfer while training on the\n", + "# other tasks.\n", + "\n", + "def train_catastrophic_forgetting():\n", + " model = Net()\n", + " history = []\n", + "\n", + " config.train_classes = [0, 1]\n", + " train_model(config, model, phase = \"0_1\", history = history)\n", + " \n", + " config.train_classes = [2, 3]\n", + " train_model(config, model, phase = \"2_3\", history = history)\n", + "\n", + " config.train_classes = [4, 5]\n", + " train_model(config, model, phase = \"4_5\", history = history)\n", + "\n", + " config.train_classes = [6, 7]\n", + " train_model(config, model, phase = \"6_7\", history = history)\n", + "\n", + " config.train_classes = [8, 9]\n", + " train_model(config, model, phase = \"8_9\", history = history)\n", + " \n", + " config.train_classes = [0, 1]\n", + " train_model(config, model, phase = \"0_1_again\", history = history)\n", + "\n", + " return history\n", + "\n", + "### END SOLUTION ###\n", + " \n", + "history_catastrophic_forgetting = train_catastrophic_forgetting()\n", + "history_catastrophic_forgetting" + ], + "metadata": { + "id": "OnATcaveP3Fi", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "6e9bc36f-8e10-405a-8297-e104141e58cc" + }, + "execution_count": 19, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train Epoch: 1 [0/12665 (0%)]\tLoss: 2.295613\n", + "Train Epoch: 1 [640/12665 (5%)]\tLoss: 1.647854\n", + "Train Epoch: 1 [1280/12665 (10%)]\tLoss: 1.039609\n", + "Train Epoch: 1 [1920/12665 (15%)]\tLoss: 0.593714\n", + "Train Epoch: 1 [2560/12665 (20%)]\tLoss: 0.321345\n", + "Train Epoch: 1 [3200/12665 (25%)]\tLoss: 0.211062\n", + "Train Epoch: 1 [3840/12665 (30%)]\tLoss: 0.124204\n", + "Train Epoch: 1 [4480/12665 (35%)]\tLoss: 0.082856\n", + "Train Epoch: 1 [5120/12665 (40%)]\tLoss: 0.075962\n", + "Train Epoch: 1 [5760/12665 (45%)]\tLoss: 0.071156\n", + "Train Epoch: 1 [6400/12665 (51%)]\tLoss: 0.117059\n", + "Train Epoch: 1 [7040/12665 (56%)]\tLoss: 0.059726\n", + "Train Epoch: 1 [7680/12665 (61%)]\tLoss: 0.032035\n", + "Train Epoch: 1 [8320/12665 (66%)]\tLoss: 0.033078\n", + "Train Epoch: 1 [8960/12665 (71%)]\tLoss: 0.030728\n", + "Train Epoch: 1 [9600/12665 (76%)]\tLoss: 0.039060\n", + "Train Epoch: 1 [10240/12665 (81%)]\tLoss: 0.035301\n", + "Train Epoch: 1 [10880/12665 (86%)]\tLoss: 0.041941\n", + "Train Epoch: 1 [11520/12665 (91%)]\tLoss: 0.040506\n", + "Train Epoch: 1 [12160/12665 (96%)]\tLoss: 0.014235\n", + "\n", + "Test set: Average loss: 7.1276\n", + "Class 0 accuracy: 977.0/980(100%)\n", + "Class 1 accuracy: 1134.0/1135(100%)\n", + "Class 2 accuracy: 0.0/1032(0%)\n", + "Class 3 accuracy: 0.0/1010(0%)\n", + "Class 4 accuracy: 0.0/982(0%)\n", + "Class 5 accuracy: 0.0/892(0%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 2 [0/12665 (0%)]\tLoss: 0.007759\n", + "Train Epoch: 2 [640/12665 (5%)]\tLoss: 0.029978\n", + "Train Epoch: 2 [1280/12665 (10%)]\tLoss: 0.017544\n", + "Train Epoch: 2 [1920/12665 (15%)]\tLoss: 0.022188\n", + "Train Epoch: 2 [2560/12665 (20%)]\tLoss: 0.009434\n", + "Train Epoch: 2 [3200/12665 (25%)]\tLoss: 0.024381\n", + "Train Epoch: 2 [3840/12665 (30%)]\tLoss: 0.086738\n", + "Train Epoch: 2 [4480/12665 (35%)]\tLoss: 0.020443\n", + "Train Epoch: 2 [5120/12665 (40%)]\tLoss: 0.015766\n", + "Train Epoch: 2 [5760/12665 (45%)]\tLoss: 0.006633\n", + "Train Epoch: 2 [6400/12665 (51%)]\tLoss: 0.007944\n", + "Train Epoch: 2 [7040/12665 (56%)]\tLoss: 0.008917\n", + "Train Epoch: 2 [7680/12665 (61%)]\tLoss: 0.004392\n", + "Train Epoch: 2 [8320/12665 (66%)]\tLoss: 0.008756\n", + "Train Epoch: 2 [8960/12665 (71%)]\tLoss: 0.056707\n", + "Train Epoch: 2 [9600/12665 (76%)]\tLoss: 0.005973\n", + "Train Epoch: 2 [10240/12665 (81%)]\tLoss: 0.008020\n", + "Train Epoch: 2 [10880/12665 (86%)]\tLoss: 0.009416\n", + "Train Epoch: 2 [11520/12665 (91%)]\tLoss: 0.017660\n", + "Train Epoch: 2 [12160/12665 (96%)]\tLoss: 0.010692\n", + "\n", + "Test set: Average loss: 8.1468\n", + "Class 0 accuracy: 977.0/980(100%)\n", + "Class 1 accuracy: 1134.0/1135(100%)\n", + "Class 2 accuracy: 0.0/1032(0%)\n", + "Class 3 accuracy: 0.0/1010(0%)\n", + "Class 4 accuracy: 0.0/982(0%)\n", + "Class 5 accuracy: 0.0/892(0%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 3 [0/12665 (0%)]\tLoss: 0.016127\n", + "Train Epoch: 3 [640/12665 (5%)]\tLoss: 0.018997\n", + "Train Epoch: 3 [1280/12665 (10%)]\tLoss: 0.004281\n", + "Train Epoch: 3 [1920/12665 (15%)]\tLoss: 0.004884\n", + "Train Epoch: 3 [2560/12665 (20%)]\tLoss: 0.006038\n", + "Train Epoch: 3 [3200/12665 (25%)]\tLoss: 0.012006\n", + "Train Epoch: 3 [3840/12665 (30%)]\tLoss: 0.009289\n", + "Train Epoch: 3 [4480/12665 (35%)]\tLoss: 0.002473\n", + "Train Epoch: 3 [5120/12665 (40%)]\tLoss: 0.002702\n", + "Train Epoch: 3 [5760/12665 (45%)]\tLoss: 0.012154\n", + "Train Epoch: 3 [6400/12665 (51%)]\tLoss: 0.018935\n", + "Train Epoch: 3 [7040/12665 (56%)]\tLoss: 0.004237\n", + "Train Epoch: 3 [7680/12665 (61%)]\tLoss: 0.003406\n", + "Train Epoch: 3 [8320/12665 (66%)]\tLoss: 0.008378\n", + "Train Epoch: 3 [8960/12665 (71%)]\tLoss: 0.003461\n", + "Train Epoch: 3 [9600/12665 (76%)]\tLoss: 0.018804\n", + "Train Epoch: 3 [10240/12665 (81%)]\tLoss: 0.015821\n", + "Train Epoch: 3 [10880/12665 (86%)]\tLoss: 0.003116\n", + "Train Epoch: 3 [11520/12665 (91%)]\tLoss: 0.002931\n", + "Train Epoch: 3 [12160/12665 (96%)]\tLoss: 0.004047\n", + "\n", + "Test set: Average loss: 8.5887\n", + "Class 0 accuracy: 977.0/980(100%)\n", + "Class 1 accuracy: 1134.0/1135(100%)\n", + "Class 2 accuracy: 0.0/1032(0%)\n", + "Class 3 accuracy: 0.0/1010(0%)\n", + "Class 4 accuracy: 0.0/982(0%)\n", + "Class 5 accuracy: 0.0/892(0%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 1 [0/12089 (0%)]\tLoss: 10.857133\n", + "Train Epoch: 1 [640/12089 (5%)]\tLoss: 6.280286\n", + "Train Epoch: 1 [1280/12089 (11%)]\tLoss: 2.301530\n", + "Train Epoch: 1 [1920/12089 (16%)]\tLoss: 0.905669\n", + "Train Epoch: 1 [2560/12089 (21%)]\tLoss: 0.688727\n", + "Train Epoch: 1 [3200/12089 (26%)]\tLoss: 0.598405\n", + "Train Epoch: 1 [3840/12089 (32%)]\tLoss: 0.462726\n", + "Train Epoch: 1 [4480/12089 (37%)]\tLoss: 0.345897\n", + "Train Epoch: 1 [5120/12089 (42%)]\tLoss: 0.380626\n", + "Train Epoch: 1 [5760/12089 (48%)]\tLoss: 0.280428\n", + "Train Epoch: 1 [6400/12089 (53%)]\tLoss: 0.216660\n", + "Train Epoch: 1 [7040/12089 (58%)]\tLoss: 0.167003\n", + "Train Epoch: 1 [7680/12089 (63%)]\tLoss: 0.275916\n", + "Train Epoch: 1 [8320/12089 (69%)]\tLoss: 0.326823\n", + "Train Epoch: 1 [8960/12089 (74%)]\tLoss: 0.258519\n", + "Train Epoch: 1 [9600/12089 (79%)]\tLoss: 0.233105\n", + "Train Epoch: 1 [10240/12089 (85%)]\tLoss: 0.235713\n", + "Train Epoch: 1 [10880/12089 (90%)]\tLoss: 0.265890\n", + "Train Epoch: 1 [11520/12089 (95%)]\tLoss: 0.262226\n", + "\n", + "Test set: Average loss: 6.2382\n", + "Class 0 accuracy: 0.0/980(0%)\n", + "Class 1 accuracy: 0.0/1135(0%)\n", + "Class 2 accuracy: 992.0/1032(96%)\n", + "Class 3 accuracy: 987.0/1010(98%)\n", + "Class 4 accuracy: 0.0/982(0%)\n", + "Class 5 accuracy: 0.0/892(0%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 2 [0/12089 (0%)]\tLoss: 0.099378\n", + "Train Epoch: 2 [640/12089 (5%)]\tLoss: 0.116401\n", + "Train Epoch: 2 [1280/12089 (11%)]\tLoss: 0.155221\n", + "Train Epoch: 2 [1920/12089 (16%)]\tLoss: 0.109446\n", + "Train Epoch: 2 [2560/12089 (21%)]\tLoss: 0.104514\n", + "Train Epoch: 2 [3200/12089 (26%)]\tLoss: 0.219575\n", + "Train Epoch: 2 [3840/12089 (32%)]\tLoss: 0.151700\n", + "Train Epoch: 2 [4480/12089 (37%)]\tLoss: 0.162770\n", + "Train Epoch: 2 [5120/12089 (42%)]\tLoss: 0.152628\n", + "Train Epoch: 2 [5760/12089 (48%)]\tLoss: 0.186006\n", + "Train Epoch: 2 [6400/12089 (53%)]\tLoss: 0.095261\n", + "Train Epoch: 2 [7040/12089 (58%)]\tLoss: 0.152865\n", + "Train Epoch: 2 [7680/12089 (63%)]\tLoss: 0.046197\n", + "Train Epoch: 2 [8320/12089 (69%)]\tLoss: 0.068629\n", + "Train Epoch: 2 [8960/12089 (74%)]\tLoss: 0.133037\n", + "Train Epoch: 2 [9600/12089 (79%)]\tLoss: 0.106119\n", + "Train Epoch: 2 [10240/12089 (85%)]\tLoss: 0.073823\n", + "Train Epoch: 2 [10880/12089 (90%)]\tLoss: 0.117314\n", + "Train Epoch: 2 [11520/12089 (95%)]\tLoss: 0.144778\n", + "\n", + "Test set: Average loss: 7.2467\n", + "Class 0 accuracy: 0.0/980(0%)\n", + "Class 1 accuracy: 0.0/1135(0%)\n", + "Class 2 accuracy: 998.0/1032(97%)\n", + "Class 3 accuracy: 994.0/1010(98%)\n", + "Class 4 accuracy: 0.0/982(0%)\n", + "Class 5 accuracy: 0.0/892(0%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 3 [0/12089 (0%)]\tLoss: 0.102792\n", + "Train Epoch: 3 [640/12089 (5%)]\tLoss: 0.209812\n", + "Train Epoch: 3 [1280/12089 (11%)]\tLoss: 0.079453\n", + "Train Epoch: 3 [1920/12089 (16%)]\tLoss: 0.146311\n", + "Train Epoch: 3 [2560/12089 (21%)]\tLoss: 0.057011\n", + "Train Epoch: 3 [3200/12089 (26%)]\tLoss: 0.062497\n", + "Train Epoch: 3 [3840/12089 (32%)]\tLoss: 0.114005\n", + "Train Epoch: 3 [4480/12089 (37%)]\tLoss: 0.089880\n", + "Train Epoch: 3 [5120/12089 (42%)]\tLoss: 0.057159\n", + "Train Epoch: 3 [5760/12089 (48%)]\tLoss: 0.117361\n", + "Train Epoch: 3 [6400/12089 (53%)]\tLoss: 0.098925\n", + "Train Epoch: 3 [7040/12089 (58%)]\tLoss: 0.069072\n", + "Train Epoch: 3 [7680/12089 (63%)]\tLoss: 0.111345\n", + "Train Epoch: 3 [8320/12089 (69%)]\tLoss: 0.131783\n", + "Train Epoch: 3 [8960/12089 (74%)]\tLoss: 0.150885\n", + "Train Epoch: 3 [9600/12089 (79%)]\tLoss: 0.079096\n", + "Train Epoch: 3 [10240/12089 (85%)]\tLoss: 0.082054\n", + "Train Epoch: 3 [10880/12089 (90%)]\tLoss: 0.129982\n", + "Train Epoch: 3 [11520/12089 (95%)]\tLoss: 0.066340\n", + "\n", + "Test set: Average loss: 7.6576\n", + "Class 0 accuracy: 0.0/980(0%)\n", + "Class 1 accuracy: 0.0/1135(0%)\n", + "Class 2 accuracy: 1007.0/1032(98%)\n", + "Class 3 accuracy: 985.0/1010(98%)\n", + "Class 4 accuracy: 0.0/982(0%)\n", + "Class 5 accuracy: 0.0/892(0%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 1 [0/11263 (0%)]\tLoss: 10.835564\n", + "Train Epoch: 1 [640/11263 (6%)]\tLoss: 5.729345\n", + "Train Epoch: 1 [1280/11263 (11%)]\tLoss: 2.635014\n", + "Train Epoch: 1 [1920/11263 (17%)]\tLoss: 1.219099\n", + "Train Epoch: 1 [2560/11263 (23%)]\tLoss: 0.913658\n", + "Train Epoch: 1 [3200/11263 (28%)]\tLoss: 0.655098\n", + "Train Epoch: 1 [3840/11263 (34%)]\tLoss: 0.466011\n", + "Train Epoch: 1 [4480/11263 (40%)]\tLoss: 0.539344\n", + "Train Epoch: 1 [5120/11263 (45%)]\tLoss: 0.249651\n", + "Train Epoch: 1 [5760/11263 (51%)]\tLoss: 0.209131\n", + "Train Epoch: 1 [6400/11263 (57%)]\tLoss: 0.223062\n", + "Train Epoch: 1 [7040/11263 (62%)]\tLoss: 0.228752\n", + "Train Epoch: 1 [7680/11263 (68%)]\tLoss: 0.198413\n", + "Train Epoch: 1 [8320/11263 (74%)]\tLoss: 0.215570\n", + "Train Epoch: 1 [8960/11263 (80%)]\tLoss: 0.272983\n", + "Train Epoch: 1 [9600/11263 (85%)]\tLoss: 0.155609\n", + "Train Epoch: 1 [10240/11263 (91%)]\tLoss: 0.087590\n", + "Train Epoch: 1 [10880/11263 (97%)]\tLoss: 0.132957\n", + "\n", + "Test set: Average loss: 7.1306\n", + "Class 0 accuracy: 0.0/980(0%)\n", + "Class 1 accuracy: 0.0/1135(0%)\n", + "Class 2 accuracy: 0.0/1032(0%)\n", + "Class 3 accuracy: 0.0/1010(0%)\n", + "Class 4 accuracy: 977.0/982(99%)\n", + "Class 5 accuracy: 866.0/892(97%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 2 [0/11263 (0%)]\tLoss: 0.130704\n", + "Train Epoch: 2 [640/11263 (6%)]\tLoss: 0.123305\n", + "Train Epoch: 2 [1280/11263 (11%)]\tLoss: 0.092606\n", + "Train Epoch: 2 [1920/11263 (17%)]\tLoss: 0.108018\n", + "Train Epoch: 2 [2560/11263 (23%)]\tLoss: 0.059542\n", + "Train Epoch: 2 [3200/11263 (28%)]\tLoss: 0.051525\n", + "Train Epoch: 2 [3840/11263 (34%)]\tLoss: 0.105634\n", + "Train Epoch: 2 [4480/11263 (40%)]\tLoss: 0.075492\n", + "Train Epoch: 2 [5120/11263 (45%)]\tLoss: 0.056117\n", + "Train Epoch: 2 [5760/11263 (51%)]\tLoss: 0.119122\n", + "Train Epoch: 2 [6400/11263 (57%)]\tLoss: 0.098337\n", + "Train Epoch: 2 [7040/11263 (62%)]\tLoss: 0.049512\n", + "Train Epoch: 2 [7680/11263 (68%)]\tLoss: 0.070381\n", + "Train Epoch: 2 [8320/11263 (74%)]\tLoss: 0.070122\n", + "Train Epoch: 2 [8960/11263 (80%)]\tLoss: 0.074574\n", + "Train Epoch: 2 [9600/11263 (85%)]\tLoss: 0.085832\n", + "Train Epoch: 2 [10240/11263 (91%)]\tLoss: 0.194243\n", + "Train Epoch: 2 [10880/11263 (97%)]\tLoss: 0.052719\n", + "\n", + "Test set: Average loss: 8.4438\n", + "Class 0 accuracy: 0.0/980(0%)\n", + "Class 1 accuracy: 0.0/1135(0%)\n", + "Class 2 accuracy: 0.0/1032(0%)\n", + "Class 3 accuracy: 0.0/1010(0%)\n", + "Class 4 accuracy: 978.0/982(100%)\n", + "Class 5 accuracy: 872.0/892(98%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 3 [0/11263 (0%)]\tLoss: 0.031168\n", + "Train Epoch: 3 [640/11263 (6%)]\tLoss: 0.133256\n", + "Train Epoch: 3 [1280/11263 (11%)]\tLoss: 0.064342\n", + "Train Epoch: 3 [1920/11263 (17%)]\tLoss: 0.081790\n", + "Train Epoch: 3 [2560/11263 (23%)]\tLoss: 0.055577\n", + "Train Epoch: 3 [3200/11263 (28%)]\tLoss: 0.031944\n", + "Train Epoch: 3 [3840/11263 (34%)]\tLoss: 0.079894\n", + "Train Epoch: 3 [4480/11263 (40%)]\tLoss: 0.054432\n", + "Train Epoch: 3 [5120/11263 (45%)]\tLoss: 0.032932\n", + "Train Epoch: 3 [5760/11263 (51%)]\tLoss: 0.054515\n", + "Train Epoch: 3 [6400/11263 (57%)]\tLoss: 0.015534\n", + "Train Epoch: 3 [7040/11263 (62%)]\tLoss: 0.073943\n", + "Train Epoch: 3 [7680/11263 (68%)]\tLoss: 0.051291\n", + "Train Epoch: 3 [8320/11263 (74%)]\tLoss: 0.071271\n", + "Train Epoch: 3 [8960/11263 (80%)]\tLoss: 0.078468\n", + "Train Epoch: 3 [9600/11263 (85%)]\tLoss: 0.074505\n", + "Train Epoch: 3 [10240/11263 (91%)]\tLoss: 0.041854\n", + "Train Epoch: 3 [10880/11263 (97%)]\tLoss: 0.051243\n", + "\n", + "Test set: Average loss: 9.0650\n", + "Class 0 accuracy: 0.0/980(0%)\n", + "Class 1 accuracy: 0.0/1135(0%)\n", + "Class 2 accuracy: 0.0/1032(0%)\n", + "Class 3 accuracy: 0.0/1010(0%)\n", + "Class 4 accuracy: 978.0/982(100%)\n", + "Class 5 accuracy: 879.0/892(99%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 1 [0/12183 (0%)]\tLoss: 12.640953\n", + "Train Epoch: 1 [640/12183 (5%)]\tLoss: 6.948784\n", + "Train Epoch: 1 [1280/12183 (10%)]\tLoss: 2.239110\n", + "Train Epoch: 1 [1920/12183 (16%)]\tLoss: 0.789898\n", + "Train Epoch: 1 [2560/12183 (21%)]\tLoss: 0.433876\n", + "Train Epoch: 1 [3200/12183 (26%)]\tLoss: 0.327010\n", + "Train Epoch: 1 [3840/12183 (31%)]\tLoss: 0.240610\n", + "Train Epoch: 1 [4480/12183 (37%)]\tLoss: 0.189328\n", + "Train Epoch: 1 [5120/12183 (42%)]\tLoss: 0.189419\n", + "Train Epoch: 1 [5760/12183 (47%)]\tLoss: 0.063147\n", + "Train Epoch: 1 [6400/12183 (52%)]\tLoss: 0.061185\n", + "Train Epoch: 1 [7040/12183 (58%)]\tLoss: 0.115183\n", + "Train Epoch: 1 [7680/12183 (63%)]\tLoss: 0.030512\n", + "Train Epoch: 1 [8320/12183 (68%)]\tLoss: 0.037145\n", + "Train Epoch: 1 [8960/12183 (73%)]\tLoss: 0.089052\n", + "Train Epoch: 1 [9600/12183 (79%)]\tLoss: 0.044766\n", + "Train Epoch: 1 [10240/12183 (84%)]\tLoss: 0.027388\n", + "Train Epoch: 1 [10880/12183 (89%)]\tLoss: 0.041345\n", + "Train Epoch: 1 [11520/12183 (94%)]\tLoss: 0.022225\n", + "Train Epoch: 1 [4370/12183 (99%)]\tLoss: 0.004926\n", + "\n", + "Test set: Average loss: 7.6796\n", + "Class 0 accuracy: 0.0/980(0%)\n", + "Class 1 accuracy: 0.0/1135(0%)\n", + "Class 2 accuracy: 0.0/1032(0%)\n", + "Class 3 accuracy: 0.0/1010(0%)\n", + "Class 4 accuracy: 0.0/982(0%)\n", + "Class 5 accuracy: 0.0/892(0%)\n", + "Class 6 accuracy: 955.0/958(100%)\n", + "Class 7 accuracy: 1017.0/1028(99%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 2 [0/12183 (0%)]\tLoss: 0.056296\n", + "Train Epoch: 2 [640/12183 (5%)]\tLoss: 0.026770\n", + "Train Epoch: 2 [1280/12183 (10%)]\tLoss: 0.014056\n", + "Train Epoch: 2 [1920/12183 (16%)]\tLoss: 0.026122\n", + "Train Epoch: 2 [2560/12183 (21%)]\tLoss: 0.025161\n", + "Train Epoch: 2 [3200/12183 (26%)]\tLoss: 0.033366\n", + "Train Epoch: 2 [3840/12183 (31%)]\tLoss: 0.011129\n", + "Train Epoch: 2 [4480/12183 (37%)]\tLoss: 0.034492\n", + "Train Epoch: 2 [5120/12183 (42%)]\tLoss: 0.009984\n", + "Train Epoch: 2 [5760/12183 (47%)]\tLoss: 0.035312\n", + "Train Epoch: 2 [6400/12183 (52%)]\tLoss: 0.028434\n", + "Train Epoch: 2 [7040/12183 (58%)]\tLoss: 0.012921\n", + "Train Epoch: 2 [7680/12183 (63%)]\tLoss: 0.009203\n", + "Train Epoch: 2 [8320/12183 (68%)]\tLoss: 0.034064\n", + "Train Epoch: 2 [8960/12183 (73%)]\tLoss: 0.018005\n", + "Train Epoch: 2 [9600/12183 (79%)]\tLoss: 0.007107\n", + "Train Epoch: 2 [10240/12183 (84%)]\tLoss: 0.003789\n", + "Train Epoch: 2 [10880/12183 (89%)]\tLoss: 0.056796\n", + "Train Epoch: 2 [11520/12183 (94%)]\tLoss: 0.008388\n", + "Train Epoch: 2 [4370/12183 (99%)]\tLoss: 0.008049\n", + "\n", + "Test set: Average loss: 8.7098\n", + "Class 0 accuracy: 0.0/980(0%)\n", + "Class 1 accuracy: 0.0/1135(0%)\n", + "Class 2 accuracy: 0.0/1032(0%)\n", + "Class 3 accuracy: 0.0/1010(0%)\n", + "Class 4 accuracy: 0.0/982(0%)\n", + "Class 5 accuracy: 0.0/892(0%)\n", + "Class 6 accuracy: 955.0/958(100%)\n", + "Class 7 accuracy: 1021.0/1028(99%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 3 [0/12183 (0%)]\tLoss: 0.031829\n", + "Train Epoch: 3 [640/12183 (5%)]\tLoss: 0.026151\n", + "Train Epoch: 3 [1280/12183 (10%)]\tLoss: 0.013025\n", + "Train Epoch: 3 [1920/12183 (16%)]\tLoss: 0.015742\n", + "Train Epoch: 3 [2560/12183 (21%)]\tLoss: 0.036039\n", + "Train Epoch: 3 [3200/12183 (26%)]\tLoss: 0.019850\n", + "Train Epoch: 3 [3840/12183 (31%)]\tLoss: 0.021591\n", + "Train Epoch: 3 [4480/12183 (37%)]\tLoss: 0.011566\n", + "Train Epoch: 3 [5120/12183 (42%)]\tLoss: 0.012161\n", + "Train Epoch: 3 [5760/12183 (47%)]\tLoss: 0.005265\n", + "Train Epoch: 3 [6400/12183 (52%)]\tLoss: 0.005189\n", + "Train Epoch: 3 [7040/12183 (58%)]\tLoss: 0.023125\n", + "Train Epoch: 3 [7680/12183 (63%)]\tLoss: 0.058819\n", + "Train Epoch: 3 [8320/12183 (68%)]\tLoss: 0.027194\n", + "Train Epoch: 3 [8960/12183 (73%)]\tLoss: 0.010728\n", + "Train Epoch: 3 [9600/12183 (79%)]\tLoss: 0.002767\n", + "Train Epoch: 3 [10240/12183 (84%)]\tLoss: 0.006029\n", + "Train Epoch: 3 [10880/12183 (89%)]\tLoss: 0.090709\n", + "Train Epoch: 3 [11520/12183 (94%)]\tLoss: 0.003533\n", + "Train Epoch: 3 [4370/12183 (99%)]\tLoss: 0.005167\n", + "\n", + "Test set: Average loss: 9.1796\n", + "Class 0 accuracy: 0.0/980(0%)\n", + "Class 1 accuracy: 0.0/1135(0%)\n", + "Class 2 accuracy: 0.0/1032(0%)\n", + "Class 3 accuracy: 0.0/1010(0%)\n", + "Class 4 accuracy: 0.0/982(0%)\n", + "Class 5 accuracy: 0.0/892(0%)\n", + "Class 6 accuracy: 955.0/958(100%)\n", + "Class 7 accuracy: 1021.0/1028(99%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 1 [0/11800 (0%)]\tLoss: 14.120369\n", + "Train Epoch: 1 [640/11800 (5%)]\tLoss: 7.705572\n", + "Train Epoch: 1 [1280/11800 (11%)]\tLoss: 2.772657\n", + "Train Epoch: 1 [1920/11800 (16%)]\tLoss: 1.523421\n", + "Train Epoch: 1 [2560/11800 (22%)]\tLoss: 0.632249\n", + "Train Epoch: 1 [3200/11800 (27%)]\tLoss: 0.823988\n", + "Train Epoch: 1 [3840/11800 (32%)]\tLoss: 0.649929\n", + "Train Epoch: 1 [4480/11800 (38%)]\tLoss: 0.382820\n", + "Train Epoch: 1 [5120/11800 (43%)]\tLoss: 0.287871\n", + "Train Epoch: 1 [5760/11800 (49%)]\tLoss: 0.270225\n", + "Train Epoch: 1 [6400/11800 (54%)]\tLoss: 0.250052\n", + "Train Epoch: 1 [7040/11800 (59%)]\tLoss: 0.436681\n", + "Train Epoch: 1 [7680/11800 (65%)]\tLoss: 0.205961\n", + "Train Epoch: 1 [8320/11800 (70%)]\tLoss: 0.226867\n", + "Train Epoch: 1 [8960/11800 (76%)]\tLoss: 0.178260\n", + "Train Epoch: 1 [9600/11800 (81%)]\tLoss: 0.159317\n", + "Train Epoch: 1 [10240/11800 (86%)]\tLoss: 0.402756\n", + "Train Epoch: 1 [10880/11800 (92%)]\tLoss: 0.158059\n", + "Train Epoch: 1 [11520/11800 (97%)]\tLoss: 0.195788\n", + "\n", + "Test set: Average loss: 5.9943\n", + "Class 0 accuracy: 0.0/980(0%)\n", + "Class 1 accuracy: 0.0/1135(0%)\n", + "Class 2 accuracy: 0.0/1032(0%)\n", + "Class 3 accuracy: 0.0/1010(0%)\n", + "Class 4 accuracy: 0.0/982(0%)\n", + "Class 5 accuracy: 0.0/892(0%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 943.0/974(97%)\n", + "Class 9 accuracy: 974.0/1009(97%)\n", + "Train Epoch: 2 [0/11800 (0%)]\tLoss: 0.157916\n", + "Train Epoch: 2 [640/11800 (5%)]\tLoss: 0.187881\n", + "Train Epoch: 2 [1280/11800 (11%)]\tLoss: 0.283773\n", + "Train Epoch: 2 [1920/11800 (16%)]\tLoss: 0.135888\n", + "Train Epoch: 2 [2560/11800 (22%)]\tLoss: 0.211785\n", + "Train Epoch: 2 [3200/11800 (27%)]\tLoss: 0.238753\n", + "Train Epoch: 2 [3840/11800 (32%)]\tLoss: 0.121974\n", + "Train Epoch: 2 [4480/11800 (38%)]\tLoss: 0.074522\n", + "Train Epoch: 2 [5120/11800 (43%)]\tLoss: 0.239114\n", + "Train Epoch: 2 [5760/11800 (49%)]\tLoss: 0.129581\n", + "Train Epoch: 2 [6400/11800 (54%)]\tLoss: 0.055795\n", + "Train Epoch: 2 [7040/11800 (59%)]\tLoss: 0.349395\n", + "Train Epoch: 2 [7680/11800 (65%)]\tLoss: 0.076350\n", + "Train Epoch: 2 [8320/11800 (70%)]\tLoss: 0.072271\n", + "Train Epoch: 2 [8960/11800 (76%)]\tLoss: 0.103121\n", + "Train Epoch: 2 [9600/11800 (81%)]\tLoss: 0.343085\n", + "Train Epoch: 2 [10240/11800 (86%)]\tLoss: 0.095953\n", + "Train Epoch: 2 [10880/11800 (92%)]\tLoss: 0.095618\n", + "Train Epoch: 2 [11520/11800 (97%)]\tLoss: 0.114838\n", + "\n", + "Test set: Average loss: 6.6632\n", + "Class 0 accuracy: 0.0/980(0%)\n", + "Class 1 accuracy: 0.0/1135(0%)\n", + "Class 2 accuracy: 0.0/1032(0%)\n", + "Class 3 accuracy: 0.0/1010(0%)\n", + "Class 4 accuracy: 0.0/982(0%)\n", + "Class 5 accuracy: 0.0/892(0%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 967.0/974(99%)\n", + "Class 9 accuracy: 965.0/1009(96%)\n", + "Train Epoch: 3 [0/11800 (0%)]\tLoss: 0.126834\n", + "Train Epoch: 3 [640/11800 (5%)]\tLoss: 0.187850\n", + "Train Epoch: 3 [1280/11800 (11%)]\tLoss: 0.102141\n", + "Train Epoch: 3 [1920/11800 (16%)]\tLoss: 0.036415\n", + "Train Epoch: 3 [2560/11800 (22%)]\tLoss: 0.165435\n", + "Train Epoch: 3 [3200/11800 (27%)]\tLoss: 0.109672\n", + "Train Epoch: 3 [3840/11800 (32%)]\tLoss: 0.070627\n", + "Train Epoch: 3 [4480/11800 (38%)]\tLoss: 0.047646\n", + "Train Epoch: 3 [5120/11800 (43%)]\tLoss: 0.051905\n", + "Train Epoch: 3 [5760/11800 (49%)]\tLoss: 0.264070\n", + "Train Epoch: 3 [6400/11800 (54%)]\tLoss: 0.211393\n", + "Train Epoch: 3 [7040/11800 (59%)]\tLoss: 0.062177\n", + "Train Epoch: 3 [7680/11800 (65%)]\tLoss: 0.033032\n", + "Train Epoch: 3 [8320/11800 (70%)]\tLoss: 0.068230\n", + "Train Epoch: 3 [8960/11800 (76%)]\tLoss: 0.071904\n", + "Train Epoch: 3 [9600/11800 (81%)]\tLoss: 0.102863\n", + "Train Epoch: 3 [10240/11800 (86%)]\tLoss: 0.046137\n", + "Train Epoch: 3 [10880/11800 (92%)]\tLoss: 0.120950\n", + "Train Epoch: 3 [11520/11800 (97%)]\tLoss: 0.101907\n", + "\n", + "Test set: Average loss: 6.9242\n", + "Class 0 accuracy: 0.0/980(0%)\n", + "Class 1 accuracy: 0.0/1135(0%)\n", + "Class 2 accuracy: 0.0/1032(0%)\n", + "Class 3 accuracy: 0.0/1010(0%)\n", + "Class 4 accuracy: 0.0/982(0%)\n", + "Class 5 accuracy: 0.0/892(0%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 952.0/974(98%)\n", + "Class 9 accuracy: 978.0/1009(97%)\n", + "Train Epoch: 1 [0/12665 (0%)]\tLoss: 8.722752\n", + "Train Epoch: 1 [640/12665 (5%)]\tLoss: 3.160372\n", + "Train Epoch: 1 [1280/12665 (10%)]\tLoss: 0.653003\n", + "Train Epoch: 1 [1920/12665 (15%)]\tLoss: 0.256268\n", + "Train Epoch: 1 [2560/12665 (20%)]\tLoss: 0.064630\n", + "Train Epoch: 1 [3200/12665 (25%)]\tLoss: 0.089074\n", + "Train Epoch: 1 [3840/12665 (30%)]\tLoss: 0.022682\n", + "Train Epoch: 1 [4480/12665 (35%)]\tLoss: 0.014132\n", + "Train Epoch: 1 [5120/12665 (40%)]\tLoss: 0.011369\n", + "Train Epoch: 1 [5760/12665 (45%)]\tLoss: 0.032196\n", + "Train Epoch: 1 [6400/12665 (51%)]\tLoss: 0.087249\n", + "Train Epoch: 1 [7040/12665 (56%)]\tLoss: 0.010759\n", + "Train Epoch: 1 [7680/12665 (61%)]\tLoss: 0.009488\n", + "Train Epoch: 1 [8320/12665 (66%)]\tLoss: 0.009431\n", + "Train Epoch: 1 [8960/12665 (71%)]\tLoss: 0.017381\n", + "Train Epoch: 1 [9600/12665 (76%)]\tLoss: 0.014684\n", + "Train Epoch: 1 [10240/12665 (81%)]\tLoss: 0.007916\n", + "Train Epoch: 1 [10880/12665 (86%)]\tLoss: 0.008834\n", + "Train Epoch: 1 [11520/12665 (91%)]\tLoss: 0.082196\n", + "Train Epoch: 1 [12160/12665 (96%)]\tLoss: 0.002452\n", + "\n", + "Test set: Average loss: 7.1540\n", + "Class 0 accuracy: 977.0/980(100%)\n", + "Class 1 accuracy: 1134.0/1135(100%)\n", + "Class 2 accuracy: 0.0/1032(0%)\n", + "Class 3 accuracy: 0.0/1010(0%)\n", + "Class 4 accuracy: 0.0/982(0%)\n", + "Class 5 accuracy: 0.0/892(0%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 2 [0/12665 (0%)]\tLoss: 0.000673\n", + "Train Epoch: 2 [640/12665 (5%)]\tLoss: 0.029478\n", + "Train Epoch: 2 [1280/12665 (10%)]\tLoss: 0.002406\n", + "Train Epoch: 2 [1920/12665 (15%)]\tLoss: 0.008619\n", + "Train Epoch: 2 [2560/12665 (20%)]\tLoss: 0.001777\n", + "Train Epoch: 2 [3200/12665 (25%)]\tLoss: 0.031666\n", + "Train Epoch: 2 [3840/12665 (30%)]\tLoss: 0.133443\n", + "Train Epoch: 2 [4480/12665 (35%)]\tLoss: 0.006141\n", + "Train Epoch: 2 [5120/12665 (40%)]\tLoss: 0.006000\n", + "Train Epoch: 2 [5760/12665 (45%)]\tLoss: 0.003495\n", + "Train Epoch: 2 [6400/12665 (51%)]\tLoss: 0.000851\n", + "Train Epoch: 2 [7040/12665 (56%)]\tLoss: 0.001280\n", + "Train Epoch: 2 [7680/12665 (61%)]\tLoss: 0.000972\n", + "Train Epoch: 2 [8320/12665 (66%)]\tLoss: 0.001776\n", + "Train Epoch: 2 [8960/12665 (71%)]\tLoss: 0.067486\n", + "Train Epoch: 2 [9600/12665 (76%)]\tLoss: 0.001030\n", + "Train Epoch: 2 [10240/12665 (81%)]\tLoss: 0.001892\n", + "Train Epoch: 2 [10880/12665 (86%)]\tLoss: 0.001493\n", + "Train Epoch: 2 [11520/12665 (91%)]\tLoss: 0.047196\n", + "Train Epoch: 2 [12160/12665 (96%)]\tLoss: 0.004952\n", + "\n", + "Test set: Average loss: 7.8296\n", + "Class 0 accuracy: 977.0/980(100%)\n", + "Class 1 accuracy: 1134.0/1135(100%)\n", + "Class 2 accuracy: 0.0/1032(0%)\n", + "Class 3 accuracy: 0.0/1010(0%)\n", + "Class 4 accuracy: 0.0/982(0%)\n", + "Class 5 accuracy: 0.0/892(0%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 3 [0/12665 (0%)]\tLoss: 0.007902\n", + "Train Epoch: 3 [640/12665 (5%)]\tLoss: 0.003385\n", + "Train Epoch: 3 [1280/12665 (10%)]\tLoss: 0.001230\n", + "Train Epoch: 3 [1920/12665 (15%)]\tLoss: 0.001810\n", + "Train Epoch: 3 [2560/12665 (20%)]\tLoss: 0.001579\n", + "Train Epoch: 3 [3200/12665 (25%)]\tLoss: 0.028920\n", + "Train Epoch: 3 [3840/12665 (30%)]\tLoss: 0.004439\n", + "Train Epoch: 3 [4480/12665 (35%)]\tLoss: 0.001913\n", + "Train Epoch: 3 [5120/12665 (40%)]\tLoss: 0.000407\n", + "Train Epoch: 3 [5760/12665 (45%)]\tLoss: 0.004402\n", + "Train Epoch: 3 [6400/12665 (51%)]\tLoss: 0.009100\n", + "Train Epoch: 3 [7040/12665 (56%)]\tLoss: 0.000980\n", + "Train Epoch: 3 [7680/12665 (61%)]\tLoss: 0.000387\n", + "Train Epoch: 3 [8320/12665 (66%)]\tLoss: 0.004606\n", + "Train Epoch: 3 [8960/12665 (71%)]\tLoss: 0.001144\n", + "Train Epoch: 3 [9600/12665 (76%)]\tLoss: 0.007978\n", + "Train Epoch: 3 [10240/12665 (81%)]\tLoss: 0.011006\n", + "Train Epoch: 3 [10880/12665 (86%)]\tLoss: 0.001300\n", + "Train Epoch: 3 [11520/12665 (91%)]\tLoss: 0.000758\n", + "Train Epoch: 3 [12160/12665 (96%)]\tLoss: 0.001379\n", + "\n", + "Test set: Average loss: 8.1397\n", + "Class 0 accuracy: 978.0/980(100%)\n", + "Class 1 accuracy: 1134.0/1135(100%)\n", + "Class 2 accuracy: 0.0/1032(0%)\n", + "Class 3 accuracy: 0.0/1010(0%)\n", + "Class 4 accuracy: 0.0/982(0%)\n", + "Class 5 accuracy: 0.0/892(0%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[{0: 0.996938775510204,\n", + " 1: 0.9991189427312775,\n", + " 2: 0.0,\n", + " 3: 0.0,\n", + " 4: 0.0,\n", + " 5: 0.0,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '0_1'},\n", + " {0: 0.996938775510204,\n", + " 1: 0.9991189427312775,\n", + " 2: 0.0,\n", + " 3: 0.0,\n", + " 4: 0.0,\n", + " 5: 0.0,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '0_1'},\n", + " {0: 0.996938775510204,\n", + " 1: 0.9991189427312775,\n", + " 2: 0.0,\n", + " 3: 0.0,\n", + " 4: 0.0,\n", + " 5: 0.0,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '0_1'},\n", + " {0: 0.0,\n", + " 1: 0.0,\n", + " 2: 0.9612403100775194,\n", + " 3: 0.9772277227722772,\n", + " 4: 0.0,\n", + " 5: 0.0,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '2_3'},\n", + " {0: 0.0,\n", + " 1: 0.0,\n", + " 2: 0.9670542635658915,\n", + " 3: 0.9841584158415841,\n", + " 4: 0.0,\n", + " 5: 0.0,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '2_3'},\n", + " {0: 0.0,\n", + " 1: 0.0,\n", + " 2: 0.9757751937984496,\n", + " 3: 0.9752475247524752,\n", + " 4: 0.0,\n", + " 5: 0.0,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '2_3'},\n", + " {0: 0.0,\n", + " 1: 0.0,\n", + " 2: 0.0,\n", + " 3: 0.0,\n", + " 4: 0.994908350305499,\n", + " 5: 0.9708520179372198,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '4_5'},\n", + " {0: 0.0,\n", + " 1: 0.0,\n", + " 2: 0.0,\n", + " 3: 0.0,\n", + " 4: 0.9959266802443992,\n", + " 5: 0.9775784753363229,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '4_5'},\n", + " {0: 0.0,\n", + " 1: 0.0,\n", + " 2: 0.0,\n", + " 3: 0.0,\n", + " 4: 0.9959266802443992,\n", + " 5: 0.9854260089686099,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '4_5'},\n", + " {0: 0.0,\n", + " 1: 0.0,\n", + " 2: 0.0,\n", + " 3: 0.0,\n", + " 4: 0.0,\n", + " 5: 0.0,\n", + " 6: 0.9968684759916493,\n", + " 7: 0.9892996108949417,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '6_7'},\n", + " {0: 0.0,\n", + " 1: 0.0,\n", + " 2: 0.0,\n", + " 3: 0.0,\n", + " 4: 0.0,\n", + " 5: 0.0,\n", + " 6: 0.9968684759916493,\n", + " 7: 0.9931906614785992,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '6_7'},\n", + " {0: 0.0,\n", + " 1: 0.0,\n", + " 2: 0.0,\n", + " 3: 0.0,\n", + " 4: 0.0,\n", + " 5: 0.0,\n", + " 6: 0.9968684759916493,\n", + " 7: 0.9931906614785992,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '6_7'},\n", + " {0: 0.0,\n", + " 1: 0.0,\n", + " 2: 0.0,\n", + " 3: 0.0,\n", + " 4: 0.0,\n", + " 5: 0.0,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.9681724845995893,\n", + " 9: 0.9653121902874133,\n", + " 'phase': '8_9'},\n", + " {0: 0.0,\n", + " 1: 0.0,\n", + " 2: 0.0,\n", + " 3: 0.0,\n", + " 4: 0.0,\n", + " 5: 0.0,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.9928131416837782,\n", + " 9: 0.956392467789891,\n", + " 'phase': '8_9'},\n", + " {0: 0.0,\n", + " 1: 0.0,\n", + " 2: 0.0,\n", + " 3: 0.0,\n", + " 4: 0.0,\n", + " 5: 0.0,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.9774127310061602,\n", + " 9: 0.9692765113974232,\n", + " 'phase': '8_9'},\n", + " {0: 0.996938775510204,\n", + " 1: 0.9991189427312775,\n", + " 2: 0.0,\n", + " 3: 0.0,\n", + " 4: 0.0,\n", + " 5: 0.0,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '0_1_again'},\n", + " {0: 0.996938775510204,\n", + " 1: 0.9991189427312775,\n", + " 2: 0.0,\n", + " 3: 0.0,\n", + " 4: 0.0,\n", + " 5: 0.0,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '0_1_again'},\n", + " {0: 0.9979591836734694,\n", + " 1: 0.9991189427312775,\n", + " 2: 0.0,\n", + " 3: 0.0,\n", + " 4: 0.0,\n", + " 5: 0.0,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '0_1_again'}]" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ] + }, + { + "cell_type": "code", + "source": [ + "# Exercise 2: Implementing the previous exercise should have shown that the network\n", + "# suffers from catastrophic forgetting. To fix this, implement a memory replay buffer\n", + "# and use this buffer to counteract the catastrophic forgetting.\n", + "#\n", + "# Implementation requires adaptation of the cells above, plus the addition of a new\n", + "# experiment setup below.\n", + "\n", + "\n", + "### START SOLUTION ###\n", + "# The experiment setup is identical to the one above, but now we initialize and use\n", + "# a replay buffer. Right now, the buffer only stores a single image for each class.\n", + "# As a bonus exercise, explore how different variants of the replay buffer affect the\n", + "# resulting model performance.\n", + "\n", + "def train_memory_replay():\n", + " model = Net()\n", + " history = []\n", + " buffer = Buffer()\n", + "\n", + " config.train_classes = [0, 1]\n", + " train_model(config, model, phase = \"0_1\", history = history, buffer = buffer)\n", + " \n", + " config.train_classes = [2, 3]\n", + " train_model(config, model, phase = \"2_3\", history = history, buffer = buffer)\n", + "\n", + " config.train_classes = [4, 5]\n", + " train_model(config, model, phase = \"4_5\", history = history, buffer = buffer)\n", + "\n", + " config.train_classes = [6, 7]\n", + " train_model(config, model, phase = \"6_7\", history = history, buffer = buffer)\n", + "\n", + " config.train_classes = [8, 9]\n", + " train_model(config, model, phase = \"8_9\", history = history, buffer = buffer)\n", + " \n", + " config.train_classes = [0, 1]\n", + " train_model(config, model, phase = \"0_1_again\", history = history, buffer = buffer)\n", + "\n", + " return history\n", + "\n", + "### END SOLUTION ###\n", + "\n", + "history_memory_replay = train_memory_replay()\n", + "history_memory_replay" + ], + "metadata": { + "id": "LtWvHl_tQCpg", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "6705c5fe-9838-4da5-a562-77d7c9a8c6d8" + }, + "execution_count": 20, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Train Epoch: 1 [0/12665 (0%)]\tLoss: 2.196357\n", + "Train Epoch: 1 [640/12665 (5%)]\tLoss: 1.335955\n", + "Train Epoch: 1 [1280/12665 (10%)]\tLoss: 0.555878\n", + "Train Epoch: 1 [1920/12665 (15%)]\tLoss: 0.146986\n", + "Train Epoch: 1 [2560/12665 (20%)]\tLoss: 0.082966\n", + "Train Epoch: 1 [3200/12665 (25%)]\tLoss: 0.054255\n", + "Train Epoch: 1 [3840/12665 (30%)]\tLoss: 0.011100\n", + "Train Epoch: 1 [4480/12665 (35%)]\tLoss: 0.078007\n", + "Train Epoch: 1 [5120/12665 (40%)]\tLoss: 0.005687\n", + "Train Epoch: 1 [5760/12665 (45%)]\tLoss: 0.004260\n", + "Train Epoch: 1 [6400/12665 (51%)]\tLoss: 0.002415\n", + "Train Epoch: 1 [7040/12665 (56%)]\tLoss: 0.005845\n", + "Train Epoch: 1 [7680/12665 (61%)]\tLoss: 0.005518\n", + "Train Epoch: 1 [8320/12665 (66%)]\tLoss: 0.001475\n", + "Train Epoch: 1 [8960/12665 (71%)]\tLoss: 0.002208\n", + "Train Epoch: 1 [9600/12665 (76%)]\tLoss: 0.000701\n", + "Train Epoch: 1 [10240/12665 (81%)]\tLoss: 0.000352\n", + "Train Epoch: 1 [10880/12665 (86%)]\tLoss: 0.000833\n", + "Train Epoch: 1 [11520/12665 (91%)]\tLoss: 0.002580\n", + "Train Epoch: 1 [12160/12665 (96%)]\tLoss: 0.002562\n", + "\n", + "Test set: Average loss: 7.8370\n", + "Class 0 accuracy: 976.0/980(100%)\n", + "Class 1 accuracy: 1134.0/1135(100%)\n", + "Class 2 accuracy: 0.0/1032(0%)\n", + "Class 3 accuracy: 0.0/1010(0%)\n", + "Class 4 accuracy: 0.0/982(0%)\n", + "Class 5 accuracy: 0.0/892(0%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 2 [0/12665 (0%)]\tLoss: 0.221930\n", + "Train Epoch: 2 [640/12665 (5%)]\tLoss: 0.027592\n", + "Train Epoch: 2 [1280/12665 (10%)]\tLoss: 0.065451\n", + "Train Epoch: 2 [1920/12665 (15%)]\tLoss: 0.015034\n", + "Train Epoch: 2 [2560/12665 (20%)]\tLoss: 0.046994\n", + "Train Epoch: 2 [3200/12665 (25%)]\tLoss: 0.008316\n", + "Train Epoch: 2 [3840/12665 (30%)]\tLoss: 0.021686\n", + "Train Epoch: 2 [4480/12665 (35%)]\tLoss: 0.024137\n", + "Train Epoch: 2 [5120/12665 (40%)]\tLoss: 0.002627\n", + "Train Epoch: 2 [5760/12665 (45%)]\tLoss: 0.042552\n", + "Train Epoch: 2 [6400/12665 (51%)]\tLoss: 0.026033\n", + "Train Epoch: 2 [7040/12665 (56%)]\tLoss: 0.002244\n", + "Train Epoch: 2 [7680/12665 (61%)]\tLoss: 0.003471\n", + "Train Epoch: 2 [8320/12665 (66%)]\tLoss: 0.041315\n", + "Train Epoch: 2 [8960/12665 (71%)]\tLoss: 0.008438\n", + "Train Epoch: 2 [9600/12665 (76%)]\tLoss: 0.000700\n", + "Train Epoch: 2 [10240/12665 (81%)]\tLoss: 0.000417\n", + "Train Epoch: 2 [10880/12665 (86%)]\tLoss: 0.002115\n", + "Train Epoch: 2 [11520/12665 (91%)]\tLoss: 0.008961\n", + "Train Epoch: 2 [12160/12665 (96%)]\tLoss: 0.002133\n", + "\n", + "Test set: Average loss: 8.7829\n", + "Class 0 accuracy: 976.0/980(100%)\n", + "Class 1 accuracy: 1135.0/1135(100%)\n", + "Class 2 accuracy: 0.0/1032(0%)\n", + "Class 3 accuracy: 0.0/1010(0%)\n", + "Class 4 accuracy: 0.0/982(0%)\n", + "Class 5 accuracy: 0.0/892(0%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 3 [0/12665 (0%)]\tLoss: 0.000570\n", + "Train Epoch: 3 [640/12665 (5%)]\tLoss: 0.011992\n", + "Train Epoch: 3 [1280/12665 (10%)]\tLoss: 0.000725\n", + "Train Epoch: 3 [1920/12665 (15%)]\tLoss: 0.000835\n", + "Train Epoch: 3 [2560/12665 (20%)]\tLoss: 0.000185\n", + "Train Epoch: 3 [3200/12665 (25%)]\tLoss: 0.001194\n", + "Train Epoch: 3 [3840/12665 (30%)]\tLoss: 0.000802\n", + "Train Epoch: 3 [4480/12665 (35%)]\tLoss: 0.001044\n", + "Train Epoch: 3 [5120/12665 (40%)]\tLoss: 0.001886\n", + "Train Epoch: 3 [5760/12665 (45%)]\tLoss: 0.001518\n", + "Train Epoch: 3 [6400/12665 (51%)]\tLoss: 0.001240\n", + "Train Epoch: 3 [7040/12665 (56%)]\tLoss: 0.005406\n", + "Train Epoch: 3 [7680/12665 (61%)]\tLoss: 0.004714\n", + "Train Epoch: 3 [8320/12665 (66%)]\tLoss: 0.000870\n", + "Train Epoch: 3 [8960/12665 (71%)]\tLoss: 0.001174\n", + "Train Epoch: 3 [9600/12665 (76%)]\tLoss: 0.000833\n", + "Train Epoch: 3 [10240/12665 (81%)]\tLoss: 0.006711\n", + "Train Epoch: 3 [10880/12665 (86%)]\tLoss: 0.006384\n", + "Train Epoch: 3 [11520/12665 (91%)]\tLoss: 0.006488\n", + "Train Epoch: 3 [12160/12665 (96%)]\tLoss: 0.000901\n", + "\n", + "Test set: Average loss: 9.2011\n", + "Class 0 accuracy: 977.0/980(100%)\n", + "Class 1 accuracy: 1135.0/1135(100%)\n", + "Class 2 accuracy: 0.0/1032(0%)\n", + "Class 3 accuracy: 0.0/1010(0%)\n", + "Class 4 accuracy: 0.0/982(0%)\n", + "Class 5 accuracy: 0.0/892(0%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 1 [0/12089 (0%)]\tLoss: 2.805099\n", + "Train Epoch: 1 [640/12089 (5%)]\tLoss: 1.660801\n", + "Train Epoch: 1 [1280/12089 (11%)]\tLoss: 0.437137\n", + "Train Epoch: 1 [1920/12089 (16%)]\tLoss: 0.808282\n", + "Train Epoch: 1 [2560/12089 (21%)]\tLoss: 0.285198\n", + "Train Epoch: 1 [3200/12089 (26%)]\tLoss: 0.129722\n", + "Train Epoch: 1 [3840/12089 (32%)]\tLoss: 0.145888\n", + "Train Epoch: 1 [4480/12089 (37%)]\tLoss: 0.343596\n", + "Train Epoch: 1 [5120/12089 (42%)]\tLoss: 0.078071\n", + "Train Epoch: 1 [5760/12089 (48%)]\tLoss: 0.098522\n", + "Train Epoch: 1 [6400/12089 (53%)]\tLoss: 0.089895\n", + "Train Epoch: 1 [7040/12089 (58%)]\tLoss: 0.067733\n", + "Train Epoch: 1 [7680/12089 (63%)]\tLoss: 0.046314\n", + "Train Epoch: 1 [8320/12089 (69%)]\tLoss: 0.028943\n", + "Train Epoch: 1 [8960/12089 (74%)]\tLoss: 0.082591\n", + "Train Epoch: 1 [9600/12089 (79%)]\tLoss: 0.024760\n", + "Train Epoch: 1 [10240/12089 (85%)]\tLoss: 0.050374\n", + "Train Epoch: 1 [10880/12089 (90%)]\tLoss: 0.020318\n", + "Train Epoch: 1 [11520/12089 (95%)]\tLoss: 0.025210\n", + "\n", + "Test set: Average loss: 5.2845\n", + "Class 0 accuracy: 829.0/980(85%)\n", + "Class 1 accuracy: 1046.0/1135(92%)\n", + "Class 2 accuracy: 991.0/1032(96%)\n", + "Class 3 accuracy: 983.0/1010(97%)\n", + "Class 4 accuracy: 0.0/982(0%)\n", + "Class 5 accuracy: 0.0/892(0%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 2 [0/12089 (0%)]\tLoss: 0.091748\n", + "Train Epoch: 2 [640/12089 (5%)]\tLoss: 0.038480\n", + "Train Epoch: 2 [1280/12089 (11%)]\tLoss: 0.027258\n", + "Train Epoch: 2 [1920/12089 (16%)]\tLoss: 0.040072\n", + "Train Epoch: 2 [2560/12089 (21%)]\tLoss: 0.024616\n", + "Train Epoch: 2 [3200/12089 (26%)]\tLoss: 0.021542\n", + "Train Epoch: 2 [3840/12089 (32%)]\tLoss: 0.016757\n", + "Train Epoch: 2 [4480/12089 (37%)]\tLoss: 0.029563\n", + "Train Epoch: 2 [5120/12089 (42%)]\tLoss: 0.010378\n", + "Train Epoch: 2 [5760/12089 (48%)]\tLoss: 0.020319\n", + "Train Epoch: 2 [6400/12089 (53%)]\tLoss: 0.019660\n", + "Train Epoch: 2 [7040/12089 (58%)]\tLoss: 0.006761\n", + "Train Epoch: 2 [7680/12089 (63%)]\tLoss: 0.026263\n", + "Train Epoch: 2 [8320/12089 (69%)]\tLoss: 0.008666\n", + "Train Epoch: 2 [8960/12089 (74%)]\tLoss: 0.013218\n", + "Train Epoch: 2 [9600/12089 (79%)]\tLoss: 0.002491\n", + "Train Epoch: 2 [10240/12089 (85%)]\tLoss: 0.010161\n", + "Train Epoch: 2 [10880/12089 (90%)]\tLoss: 0.019670\n", + "Train Epoch: 2 [11520/12089 (95%)]\tLoss: 0.012468\n", + "\n", + "Test set: Average loss: 6.1435\n", + "Class 0 accuracy: 764.0/980(78%)\n", + "Class 1 accuracy: 999.0/1135(88%)\n", + "Class 2 accuracy: 1000.0/1032(97%)\n", + "Class 3 accuracy: 988.0/1010(98%)\n", + "Class 4 accuracy: 0.0/982(0%)\n", + "Class 5 accuracy: 0.0/892(0%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 3 [0/12089 (0%)]\tLoss: 0.028908\n", + "Train Epoch: 3 [640/12089 (5%)]\tLoss: 0.017523\n", + "Train Epoch: 3 [1280/12089 (11%)]\tLoss: 0.012286\n", + "Train Epoch: 3 [1920/12089 (16%)]\tLoss: 0.029993\n", + "Train Epoch: 3 [2560/12089 (21%)]\tLoss: 0.014532\n", + "Train Epoch: 3 [3200/12089 (26%)]\tLoss: 0.023068\n", + "Train Epoch: 3 [3840/12089 (32%)]\tLoss: 0.007645\n", + "Train Epoch: 3 [4480/12089 (37%)]\tLoss: 0.016837\n", + "Train Epoch: 3 [5120/12089 (42%)]\tLoss: 0.004771\n", + "Train Epoch: 3 [5760/12089 (48%)]\tLoss: 0.004505\n", + "Train Epoch: 3 [6400/12089 (53%)]\tLoss: 0.085267\n", + "Train Epoch: 3 [7040/12089 (58%)]\tLoss: 0.007249\n", + "Train Epoch: 3 [7680/12089 (63%)]\tLoss: 0.005857\n", + "Train Epoch: 3 [8320/12089 (69%)]\tLoss: 0.036750\n", + "Train Epoch: 3 [8960/12089 (74%)]\tLoss: 0.035684\n", + "Train Epoch: 3 [9600/12089 (79%)]\tLoss: 0.005433\n", + "Train Epoch: 3 [10240/12089 (85%)]\tLoss: 0.006491\n", + "Train Epoch: 3 [10880/12089 (90%)]\tLoss: 0.026140\n", + "Train Epoch: 3 [11520/12089 (95%)]\tLoss: 0.007269\n", + "\n", + "Test set: Average loss: 6.5537\n", + "Class 0 accuracy: 723.0/980(74%)\n", + "Class 1 accuracy: 968.0/1135(85%)\n", + "Class 2 accuracy: 999.0/1032(97%)\n", + "Class 3 accuracy: 992.0/1010(98%)\n", + "Class 4 accuracy: 0.0/982(0%)\n", + "Class 5 accuracy: 0.0/892(0%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 1 [0/11263 (0%)]\tLoss: 1.635322\n", + "Train Epoch: 1 [640/11263 (6%)]\tLoss: 0.442154\n", + "Train Epoch: 1 [1280/11263 (11%)]\tLoss: 0.249078\n", + "Train Epoch: 1 [1920/11263 (17%)]\tLoss: 0.270407\n", + "Train Epoch: 1 [2560/11263 (23%)]\tLoss: 0.180369\n", + "Train Epoch: 1 [3200/11263 (28%)]\tLoss: 0.088140\n", + "Train Epoch: 1 [3840/11263 (34%)]\tLoss: 0.171120\n", + "Train Epoch: 1 [4480/11263 (40%)]\tLoss: 0.263797\n", + "Train Epoch: 1 [5120/11263 (45%)]\tLoss: 0.111911\n", + "Train Epoch: 1 [5760/11263 (51%)]\tLoss: 0.117878\n", + "Train Epoch: 1 [6400/11263 (57%)]\tLoss: 0.033867\n", + "Train Epoch: 1 [7040/11263 (62%)]\tLoss: 0.058040\n", + "Train Epoch: 1 [7680/11263 (68%)]\tLoss: 0.034263\n", + "Train Epoch: 1 [8320/11263 (74%)]\tLoss: 0.082758\n", + "Train Epoch: 1 [8960/11263 (80%)]\tLoss: 0.041592\n", + "Train Epoch: 1 [9600/11263 (85%)]\tLoss: 0.035437\n", + "Train Epoch: 1 [10240/11263 (91%)]\tLoss: 0.015268\n", + "Train Epoch: 1 [10880/11263 (97%)]\tLoss: 0.029453\n", + "\n", + "Test set: Average loss: 4.5940\n", + "Class 0 accuracy: 760.0/980(78%)\n", + "Class 1 accuracy: 986.0/1135(87%)\n", + "Class 2 accuracy: 664.0/1032(64%)\n", + "Class 3 accuracy: 367.0/1010(36%)\n", + "Class 4 accuracy: 979.0/982(100%)\n", + "Class 5 accuracy: 864.0/892(97%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 2 [0/11263 (0%)]\tLoss: 0.008444\n", + "Train Epoch: 2 [640/11263 (6%)]\tLoss: 0.020623\n", + "Train Epoch: 2 [1280/11263 (11%)]\tLoss: 0.028893\n", + "Train Epoch: 2 [1920/11263 (17%)]\tLoss: 0.025949\n", + "Train Epoch: 2 [2560/11263 (23%)]\tLoss: 0.027629\n", + "Train Epoch: 2 [3200/11263 (28%)]\tLoss: 0.012673\n", + "Train Epoch: 2 [3840/11263 (34%)]\tLoss: 0.132138\n", + "Train Epoch: 2 [4480/11263 (40%)]\tLoss: 0.019918\n", + "Train Epoch: 2 [5120/11263 (45%)]\tLoss: 0.040663\n", + "Train Epoch: 2 [5760/11263 (51%)]\tLoss: 0.072586\n", + "Train Epoch: 2 [6400/11263 (57%)]\tLoss: 0.027573\n", + "Train Epoch: 2 [7040/11263 (62%)]\tLoss: 0.010655\n", + "Train Epoch: 2 [7680/11263 (68%)]\tLoss: 0.007804\n", + "Train Epoch: 2 [8320/11263 (74%)]\tLoss: 0.021280\n", + "Train Epoch: 2 [8960/11263 (80%)]\tLoss: 0.038740\n", + "Train Epoch: 2 [9600/11263 (85%)]\tLoss: 0.005795\n", + "Train Epoch: 2 [10240/11263 (91%)]\tLoss: 0.005783\n", + "Train Epoch: 2 [10880/11263 (97%)]\tLoss: 0.049235\n", + "\n", + "Test set: Average loss: 5.5267\n", + "Class 0 accuracy: 647.0/980(66%)\n", + "Class 1 accuracy: 970.0/1135(85%)\n", + "Class 2 accuracy: 616.0/1032(60%)\n", + "Class 3 accuracy: 240.0/1010(24%)\n", + "Class 4 accuracy: 979.0/982(100%)\n", + "Class 5 accuracy: 876.0/892(98%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 3 [0/11263 (0%)]\tLoss: 0.060683\n", + "Train Epoch: 3 [640/11263 (6%)]\tLoss: 0.049512\n", + "Train Epoch: 3 [1280/11263 (11%)]\tLoss: 0.034698\n", + "Train Epoch: 3 [1920/11263 (17%)]\tLoss: 0.015581\n", + "Train Epoch: 3 [2560/11263 (23%)]\tLoss: 0.097252\n", + "Train Epoch: 3 [3200/11263 (28%)]\tLoss: 0.022429\n", + "Train Epoch: 3 [3840/11263 (34%)]\tLoss: 0.021434\n", + "Train Epoch: 3 [4480/11263 (40%)]\tLoss: 0.030935\n", + "Train Epoch: 3 [5120/11263 (45%)]\tLoss: 0.055945\n", + "Train Epoch: 3 [5760/11263 (51%)]\tLoss: 0.032630\n", + "Train Epoch: 3 [6400/11263 (57%)]\tLoss: 0.010632\n", + "Train Epoch: 3 [7040/11263 (62%)]\tLoss: 0.014181\n", + "Train Epoch: 3 [7680/11263 (68%)]\tLoss: 0.011640\n", + "Train Epoch: 3 [8320/11263 (74%)]\tLoss: 0.022853\n", + "Train Epoch: 3 [8960/11263 (80%)]\tLoss: 0.011952\n", + "Train Epoch: 3 [9600/11263 (85%)]\tLoss: 0.029158\n", + "Train Epoch: 3 [10240/11263 (91%)]\tLoss: 0.005775\n", + "Train Epoch: 3 [10880/11263 (97%)]\tLoss: 0.044570\n", + "\n", + "Test set: Average loss: 6.0346\n", + "Class 0 accuracy: 662.0/980(68%)\n", + "Class 1 accuracy: 972.0/1135(86%)\n", + "Class 2 accuracy: 558.0/1032(54%)\n", + "Class 3 accuracy: 228.0/1010(23%)\n", + "Class 4 accuracy: 978.0/982(100%)\n", + "Class 5 accuracy: 883.0/892(99%)\n", + "Class 6 accuracy: 0.0/958(0%)\n", + "Class 7 accuracy: 0.0/1028(0%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 1 [0/12183 (0%)]\tLoss: 1.379911\n", + "Train Epoch: 1 [640/12183 (5%)]\tLoss: 0.125989\n", + "Train Epoch: 1 [1280/12183 (10%)]\tLoss: 0.938824\n", + "Train Epoch: 1 [1920/12183 (16%)]\tLoss: 0.376103\n", + "Train Epoch: 1 [2560/12183 (21%)]\tLoss: 0.235958\n", + "Train Epoch: 1 [3200/12183 (26%)]\tLoss: 0.146971\n", + "Train Epoch: 1 [3840/12183 (31%)]\tLoss: 0.261188\n", + "Train Epoch: 1 [4480/12183 (37%)]\tLoss: 0.162076\n", + "Train Epoch: 1 [5120/12183 (42%)]\tLoss: 0.064259\n", + "Train Epoch: 1 [5760/12183 (47%)]\tLoss: 0.127866\n", + "Train Epoch: 1 [6400/12183 (52%)]\tLoss: 0.153409\n", + "Train Epoch: 1 [7040/12183 (58%)]\tLoss: 0.117668\n", + "Train Epoch: 1 [7680/12183 (63%)]\tLoss: 0.058572\n", + "Train Epoch: 1 [8320/12183 (68%)]\tLoss: 0.084697\n", + "Train Epoch: 1 [8960/12183 (73%)]\tLoss: 0.034420\n", + "Train Epoch: 1 [9600/12183 (79%)]\tLoss: 0.017252\n", + "Train Epoch: 1 [10240/12183 (84%)]\tLoss: 0.020837\n", + "Train Epoch: 1 [10880/12183 (89%)]\tLoss: 0.022506\n", + "Train Epoch: 1 [11520/12183 (94%)]\tLoss: 0.073931\n", + "Train Epoch: 1 [4370/12183 (99%)]\tLoss: 0.032285\n", + "\n", + "Test set: Average loss: 2.6226\n", + "Class 0 accuracy: 668.0/980(68%)\n", + "Class 1 accuracy: 975.0/1135(86%)\n", + "Class 2 accuracy: 475.0/1032(46%)\n", + "Class 3 accuracy: 489.0/1010(48%)\n", + "Class 4 accuracy: 691.0/982(70%)\n", + "Class 5 accuracy: 564.0/892(63%)\n", + "Class 6 accuracy: 948.0/958(99%)\n", + "Class 7 accuracy: 1003.0/1028(98%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 2 [0/12183 (0%)]\tLoss: 0.045590\n", + "Train Epoch: 2 [640/12183 (5%)]\tLoss: 0.091010\n", + "Train Epoch: 2 [1280/12183 (10%)]\tLoss: 0.021004\n", + "Train Epoch: 2 [1920/12183 (16%)]\tLoss: 0.036341\n", + "Train Epoch: 2 [2560/12183 (21%)]\tLoss: 0.021020\n", + "Train Epoch: 2 [3200/12183 (26%)]\tLoss: 0.036480\n", + "Train Epoch: 2 [3840/12183 (31%)]\tLoss: 0.043549\n", + "Train Epoch: 2 [4480/12183 (37%)]\tLoss: 0.029598\n", + "Train Epoch: 2 [5120/12183 (42%)]\tLoss: 0.053440\n", + "Train Epoch: 2 [5760/12183 (47%)]\tLoss: 0.016025\n", + "Train Epoch: 2 [6400/12183 (52%)]\tLoss: 0.022595\n", + "Train Epoch: 2 [7040/12183 (58%)]\tLoss: 0.008219\n", + "Train Epoch: 2 [7680/12183 (63%)]\tLoss: 0.047070\n", + "Train Epoch: 2 [8320/12183 (68%)]\tLoss: 0.021060\n", + "Train Epoch: 2 [8960/12183 (73%)]\tLoss: 0.024627\n", + "Train Epoch: 2 [9600/12183 (79%)]\tLoss: 0.031155\n", + "Train Epoch: 2 [10240/12183 (84%)]\tLoss: 0.045095\n", + "Train Epoch: 2 [10880/12183 (89%)]\tLoss: 0.015965\n", + "Train Epoch: 2 [11520/12183 (94%)]\tLoss: 0.025968\n", + "Train Epoch: 2 [4370/12183 (99%)]\tLoss: 0.043935\n", + "\n", + "Test set: Average loss: 3.1688\n", + "Class 0 accuracy: 682.0/980(70%)\n", + "Class 1 accuracy: 969.0/1135(85%)\n", + "Class 2 accuracy: 480.0/1032(47%)\n", + "Class 3 accuracy: 471.0/1010(47%)\n", + "Class 4 accuracy: 635.0/982(65%)\n", + "Class 5 accuracy: 484.0/892(54%)\n", + "Class 6 accuracy: 950.0/958(99%)\n", + "Class 7 accuracy: 1013.0/1028(99%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 3 [0/12183 (0%)]\tLoss: 0.019614\n", + "Train Epoch: 3 [640/12183 (5%)]\tLoss: 0.059921\n", + "Train Epoch: 3 [1280/12183 (10%)]\tLoss: 0.018621\n", + "Train Epoch: 3 [1920/12183 (16%)]\tLoss: 0.011714\n", + "Train Epoch: 3 [2560/12183 (21%)]\tLoss: 0.014679\n", + "Train Epoch: 3 [3200/12183 (26%)]\tLoss: 0.012920\n", + "Train Epoch: 3 [3840/12183 (31%)]\tLoss: 0.022788\n", + "Train Epoch: 3 [4480/12183 (37%)]\tLoss: 0.016748\n", + "Train Epoch: 3 [5120/12183 (42%)]\tLoss: 0.028296\n", + "Train Epoch: 3 [5760/12183 (47%)]\tLoss: 0.021148\n", + "Train Epoch: 3 [6400/12183 (52%)]\tLoss: 0.008148\n", + "Train Epoch: 3 [7040/12183 (58%)]\tLoss: 0.011808\n", + "Train Epoch: 3 [7680/12183 (63%)]\tLoss: 0.009274\n", + "Train Epoch: 3 [8320/12183 (68%)]\tLoss: 0.011613\n", + "Train Epoch: 3 [8960/12183 (73%)]\tLoss: 0.013502\n", + "Train Epoch: 3 [9600/12183 (79%)]\tLoss: 0.022795\n", + "Train Epoch: 3 [10240/12183 (84%)]\tLoss: 0.013261\n", + "Train Epoch: 3 [10880/12183 (89%)]\tLoss: 0.026117\n", + "Train Epoch: 3 [11520/12183 (94%)]\tLoss: 0.004542\n", + "Train Epoch: 3 [4370/12183 (99%)]\tLoss: 0.002898\n", + "\n", + "Test set: Average loss: 3.5287\n", + "Class 0 accuracy: 636.0/980(65%)\n", + "Class 1 accuracy: 955.0/1135(84%)\n", + "Class 2 accuracy: 451.0/1032(44%)\n", + "Class 3 accuracy: 432.0/1010(43%)\n", + "Class 4 accuracy: 562.0/982(57%)\n", + "Class 5 accuracy: 458.0/892(51%)\n", + "Class 6 accuracy: 952.0/958(99%)\n", + "Class 7 accuracy: 1018.0/1028(99%)\n", + "Class 8 accuracy: 0.0/974(0%)\n", + "Class 9 accuracy: 0.0/1009(0%)\n", + "Train Epoch: 1 [0/11800 (0%)]\tLoss: 0.473740\n", + "Train Epoch: 1 [640/11800 (5%)]\tLoss: 0.210103\n", + "Train Epoch: 1 [1280/11800 (11%)]\tLoss: 0.418402\n", + "Train Epoch: 1 [1920/11800 (16%)]\tLoss: 0.530582\n", + "Train Epoch: 1 [2560/11800 (22%)]\tLoss: 0.304206\n", + "Train Epoch: 1 [3200/11800 (27%)]\tLoss: 0.122092\n", + "Train Epoch: 1 [3840/11800 (32%)]\tLoss: 0.183575\n", + "Train Epoch: 1 [4480/11800 (38%)]\tLoss: 0.260152\n", + "Train Epoch: 1 [5120/11800 (43%)]\tLoss: 0.277376\n", + "Train Epoch: 1 [5760/11800 (49%)]\tLoss: 0.212683\n", + "Train Epoch: 1 [6400/11800 (54%)]\tLoss: 0.163834\n", + "Train Epoch: 1 [7040/11800 (59%)]\tLoss: 0.088070\n", + "Train Epoch: 1 [7680/11800 (65%)]\tLoss: 0.092493\n", + "Train Epoch: 1 [8320/11800 (70%)]\tLoss: 0.169504\n", + "Train Epoch: 1 [8960/11800 (76%)]\tLoss: 0.130592\n", + "Train Epoch: 1 [9600/11800 (81%)]\tLoss: 0.043165\n", + "Train Epoch: 1 [10240/11800 (86%)]\tLoss: 0.051642\n", + "Train Epoch: 1 [10880/11800 (92%)]\tLoss: 0.081378\n", + "Train Epoch: 1 [11520/11800 (97%)]\tLoss: 0.073074\n", + "\n", + "Test set: Average loss: 1.1909\n", + "Class 0 accuracy: 710.0/980(72%)\n", + "Class 1 accuracy: 937.0/1135(83%)\n", + "Class 2 accuracy: 525.0/1032(51%)\n", + "Class 3 accuracy: 409.0/1010(40%)\n", + "Class 4 accuracy: 368.0/982(37%)\n", + "Class 5 accuracy: 359.0/892(40%)\n", + "Class 6 accuracy: 782.0/958(82%)\n", + "Class 7 accuracy: 587.0/1028(57%)\n", + "Class 8 accuracy: 945.0/974(97%)\n", + "Class 9 accuracy: 974.0/1009(97%)\n", + "Train Epoch: 2 [0/11800 (0%)]\tLoss: 0.106367\n", + "Train Epoch: 2 [640/11800 (5%)]\tLoss: 0.110765\n", + "Train Epoch: 2 [1280/11800 (11%)]\tLoss: 0.168906\n", + "Train Epoch: 2 [1920/11800 (16%)]\tLoss: 0.130259\n", + "Train Epoch: 2 [2560/11800 (22%)]\tLoss: 0.099700\n", + "Train Epoch: 2 [3200/11800 (27%)]\tLoss: 0.045566\n", + "Train Epoch: 2 [3840/11800 (32%)]\tLoss: 0.032498\n", + "Train Epoch: 2 [4480/11800 (38%)]\tLoss: 0.127420\n", + "Train Epoch: 2 [5120/11800 (43%)]\tLoss: 0.127244\n", + "Train Epoch: 2 [5760/11800 (49%)]\tLoss: 0.123305\n", + "Train Epoch: 2 [6400/11800 (54%)]\tLoss: 0.033301\n", + "Train Epoch: 2 [7040/11800 (59%)]\tLoss: 0.050663\n", + "Train Epoch: 2 [7680/11800 (65%)]\tLoss: 0.029956\n", + "Train Epoch: 2 [8320/11800 (70%)]\tLoss: 0.016801\n", + "Train Epoch: 2 [8960/11800 (76%)]\tLoss: 0.067689\n", + "Train Epoch: 2 [9600/11800 (81%)]\tLoss: 0.044518\n", + "Train Epoch: 2 [10240/11800 (86%)]\tLoss: 0.073524\n", + "Train Epoch: 2 [10880/11800 (92%)]\tLoss: 0.035689\n", + "Train Epoch: 2 [11520/11800 (97%)]\tLoss: 0.084134\n", + "\n", + "Test set: Average loss: 1.5479\n", + "Class 0 accuracy: 684.0/980(70%)\n", + "Class 1 accuracy: 893.0/1135(79%)\n", + "Class 2 accuracy: 470.0/1032(46%)\n", + "Class 3 accuracy: 346.0/1010(34%)\n", + "Class 4 accuracy: 312.0/982(32%)\n", + "Class 5 accuracy: 298.0/892(33%)\n", + "Class 6 accuracy: 758.0/958(79%)\n", + "Class 7 accuracy: 583.0/1028(57%)\n", + "Class 8 accuracy: 953.0/974(98%)\n", + "Class 9 accuracy: 977.0/1009(97%)\n", + "Train Epoch: 3 [0/11800 (0%)]\tLoss: 0.106828\n", + "Train Epoch: 3 [640/11800 (5%)]\tLoss: 0.064151\n", + "Train Epoch: 3 [1280/11800 (11%)]\tLoss: 0.064141\n", + "Train Epoch: 3 [1920/11800 (16%)]\tLoss: 0.046738\n", + "Train Epoch: 3 [2560/11800 (22%)]\tLoss: 0.060965\n", + "Train Epoch: 3 [3200/11800 (27%)]\tLoss: 0.041177\n", + "Train Epoch: 3 [3840/11800 (32%)]\tLoss: 0.015125\n", + "Train Epoch: 3 [4480/11800 (38%)]\tLoss: 0.036628\n", + "Train Epoch: 3 [5120/11800 (43%)]\tLoss: 0.040213\n", + "Train Epoch: 3 [5760/11800 (49%)]\tLoss: 0.038948\n", + "Train Epoch: 3 [6400/11800 (54%)]\tLoss: 0.065069\n", + "Train Epoch: 3 [7040/11800 (59%)]\tLoss: 0.060684\n", + "Train Epoch: 3 [7680/11800 (65%)]\tLoss: 0.051811\n", + "Train Epoch: 3 [8320/11800 (70%)]\tLoss: 0.096974\n", + "Train Epoch: 3 [8960/11800 (76%)]\tLoss: 0.014142\n", + "Train Epoch: 3 [9600/11800 (81%)]\tLoss: 0.068916\n", + "Train Epoch: 3 [10240/11800 (86%)]\tLoss: 0.047880\n", + "Train Epoch: 3 [10880/11800 (92%)]\tLoss: 0.007572\n", + "Train Epoch: 3 [11520/11800 (97%)]\tLoss: 0.025779\n", + "\n", + "Test set: Average loss: 1.6151\n", + "Class 0 accuracy: 647.0/980(66%)\n", + "Class 1 accuracy: 885.0/1135(78%)\n", + "Class 2 accuracy: 492.0/1032(48%)\n", + "Class 3 accuracy: 379.0/1010(38%)\n", + "Class 4 accuracy: 323.0/982(33%)\n", + "Class 5 accuracy: 310.0/892(35%)\n", + "Class 6 accuracy: 736.0/958(77%)\n", + "Class 7 accuracy: 546.0/1028(53%)\n", + "Class 8 accuracy: 961.0/974(99%)\n", + "Class 9 accuracy: 976.0/1009(97%)\n", + "Train Epoch: 1 [0/12665 (0%)]\tLoss: 0.030852\n", + "Train Epoch: 1 [640/12665 (5%)]\tLoss: 0.051628\n", + "Train Epoch: 1 [1280/12665 (10%)]\tLoss: 0.097404\n", + "Train Epoch: 1 [1920/12665 (15%)]\tLoss: 0.066156\n", + "Train Epoch: 1 [2560/12665 (20%)]\tLoss: 0.085003\n", + "Train Epoch: 1 [3200/12665 (25%)]\tLoss: 0.022351\n", + "Train Epoch: 1 [3840/12665 (30%)]\tLoss: 0.047033\n", + "Train Epoch: 1 [4480/12665 (35%)]\tLoss: 0.021085\n", + "Train Epoch: 1 [5120/12665 (40%)]\tLoss: 0.038875\n", + "Train Epoch: 1 [5760/12665 (45%)]\tLoss: 0.035716\n", + "Train Epoch: 1 [6400/12665 (51%)]\tLoss: 0.033066\n", + "Train Epoch: 1 [7040/12665 (56%)]\tLoss: 0.020775\n", + "Train Epoch: 1 [7680/12665 (61%)]\tLoss: 0.027079\n", + "Train Epoch: 1 [8320/12665 (66%)]\tLoss: 0.071041\n", + "Train Epoch: 1 [8960/12665 (71%)]\tLoss: 0.030695\n", + "Train Epoch: 1 [9600/12665 (76%)]\tLoss: 0.038757\n", + "Train Epoch: 1 [10240/12665 (81%)]\tLoss: 0.003501\n", + "Train Epoch: 1 [10880/12665 (86%)]\tLoss: 0.011310\n", + "Train Epoch: 1 [11520/12665 (91%)]\tLoss: 0.057821\n", + "Train Epoch: 1 [12160/12665 (96%)]\tLoss: 0.016945\n", + "\n", + "Test set: Average loss: 1.3637\n", + "Class 0 accuracy: 977.0/980(100%)\n", + "Class 1 accuracy: 1133.0/1135(100%)\n", + "Class 2 accuracy: 574.0/1032(56%)\n", + "Class 3 accuracy: 561.0/1010(56%)\n", + "Class 4 accuracy: 494.0/982(50%)\n", + "Class 5 accuracy: 328.0/892(37%)\n", + "Class 6 accuracy: 656.0/958(68%)\n", + "Class 7 accuracy: 753.0/1028(73%)\n", + "Class 8 accuracy: 701.0/974(72%)\n", + "Class 9 accuracy: 866.0/1009(86%)\n", + "Train Epoch: 2 [0/12665 (0%)]\tLoss: 0.016473\n", + "Train Epoch: 2 [640/12665 (5%)]\tLoss: 0.007508\n", + "Train Epoch: 2 [1280/12665 (10%)]\tLoss: 0.037633\n", + "Train Epoch: 2 [1920/12665 (15%)]\tLoss: 0.026398\n", + "Train Epoch: 2 [2560/12665 (20%)]\tLoss: 0.004491\n", + "Train Epoch: 2 [3200/12665 (25%)]\tLoss: 0.002447\n", + "Train Epoch: 2 [3840/12665 (30%)]\tLoss: 0.007396\n", + "Train Epoch: 2 [4480/12665 (35%)]\tLoss: 0.022243\n", + "Train Epoch: 2 [5120/12665 (40%)]\tLoss: 0.032471\n", + "Train Epoch: 2 [5760/12665 (45%)]\tLoss: 0.012960\n", + "Train Epoch: 2 [6400/12665 (51%)]\tLoss: 0.009143\n", + "Train Epoch: 2 [7040/12665 (56%)]\tLoss: 0.005618\n", + "Train Epoch: 2 [7680/12665 (61%)]\tLoss: 0.016858\n", + "Train Epoch: 2 [8320/12665 (66%)]\tLoss: 0.015019\n", + "Train Epoch: 2 [8960/12665 (71%)]\tLoss: 0.042326\n", + "Train Epoch: 2 [9600/12665 (76%)]\tLoss: 0.005700\n", + "Train Epoch: 2 [10240/12665 (81%)]\tLoss: 0.020611\n", + "Train Epoch: 2 [10880/12665 (86%)]\tLoss: 0.011131\n", + "Train Epoch: 2 [11520/12665 (91%)]\tLoss: 0.019555\n", + "Train Epoch: 2 [12160/12665 (96%)]\tLoss: 0.015460\n", + "\n", + "Test set: Average loss: 1.5375\n", + "Class 0 accuracy: 977.0/980(100%)\n", + "Class 1 accuracy: 1133.0/1135(100%)\n", + "Class 2 accuracy: 500.0/1032(48%)\n", + "Class 3 accuracy: 503.0/1010(50%)\n", + "Class 4 accuracy: 489.0/982(50%)\n", + "Class 5 accuracy: 362.0/892(41%)\n", + "Class 6 accuracy: 639.0/958(67%)\n", + "Class 7 accuracy: 746.0/1028(73%)\n", + "Class 8 accuracy: 657.0/974(67%)\n", + "Class 9 accuracy: 847.0/1009(84%)\n", + "Train Epoch: 3 [0/12665 (0%)]\tLoss: 0.003884\n", + "Train Epoch: 3 [640/12665 (5%)]\tLoss: 0.024282\n", + "Train Epoch: 3 [1280/12665 (10%)]\tLoss: 0.007995\n", + "Train Epoch: 3 [1920/12665 (15%)]\tLoss: 0.006038\n", + "Train Epoch: 3 [2560/12665 (20%)]\tLoss: 0.007882\n", + "Train Epoch: 3 [3200/12665 (25%)]\tLoss: 0.008968\n", + "Train Epoch: 3 [3840/12665 (30%)]\tLoss: 0.007985\n", + "Train Epoch: 3 [4480/12665 (35%)]\tLoss: 0.017382\n", + "Train Epoch: 3 [5120/12665 (40%)]\tLoss: 0.006549\n", + "Train Epoch: 3 [5760/12665 (45%)]\tLoss: 0.006111\n", + "Train Epoch: 3 [6400/12665 (51%)]\tLoss: 0.016712\n", + "Train Epoch: 3 [7040/12665 (56%)]\tLoss: 0.009508\n", + "Train Epoch: 3 [7680/12665 (61%)]\tLoss: 0.013591\n", + "Train Epoch: 3 [8320/12665 (66%)]\tLoss: 0.002323\n", + "Train Epoch: 3 [8960/12665 (71%)]\tLoss: 0.003972\n", + "Train Epoch: 3 [9600/12665 (76%)]\tLoss: 0.002240\n", + "Train Epoch: 3 [10240/12665 (81%)]\tLoss: 0.012233\n", + "Train Epoch: 3 [10880/12665 (86%)]\tLoss: 0.046749\n", + "Train Epoch: 3 [11520/12665 (91%)]\tLoss: 0.006683\n", + "Train Epoch: 3 [12160/12665 (96%)]\tLoss: 0.006137\n", + "\n", + "Test set: Average loss: 1.5670\n", + "Class 0 accuracy: 976.0/980(100%)\n", + "Class 1 accuracy: 1134.0/1135(100%)\n", + "Class 2 accuracy: 509.0/1032(49%)\n", + "Class 3 accuracy: 520.0/1010(51%)\n", + "Class 4 accuracy: 496.0/982(51%)\n", + "Class 5 accuracy: 355.0/892(40%)\n", + "Class 6 accuracy: 625.0/958(65%)\n", + "Class 7 accuracy: 743.0/1028(72%)\n", + "Class 8 accuracy: 654.0/974(67%)\n", + "Class 9 accuracy: 854.0/1009(85%)\n" + ] + }, + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "[{0: 0.9959183673469387,\n", + " 1: 0.9991189427312775,\n", + " 2: 0.0,\n", + " 3: 0.0,\n", + " 4: 0.0,\n", + " 5: 0.0,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '0_1'},\n", + " {0: 0.9959183673469387,\n", + " 1: 1.0,\n", + " 2: 0.0,\n", + " 3: 0.0,\n", + " 4: 0.0,\n", + " 5: 0.0,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '0_1'},\n", + " {0: 0.996938775510204,\n", + " 1: 1.0,\n", + " 2: 0.0,\n", + " 3: 0.0,\n", + " 4: 0.0,\n", + " 5: 0.0,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '0_1'},\n", + " {0: 0.8459183673469388,\n", + " 1: 0.9215859030837005,\n", + " 2: 0.9602713178294574,\n", + " 3: 0.9732673267326732,\n", + " 4: 0.0,\n", + " 5: 0.0,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '2_3'},\n", + " {0: 0.7795918367346939,\n", + " 1: 0.8801762114537445,\n", + " 2: 0.9689922480620154,\n", + " 3: 0.9782178217821782,\n", + " 4: 0.0,\n", + " 5: 0.0,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '2_3'},\n", + " {0: 0.7377551020408163,\n", + " 1: 0.852863436123348,\n", + " 2: 0.9680232558139535,\n", + " 3: 0.9821782178217822,\n", + " 4: 0.0,\n", + " 5: 0.0,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '2_3'},\n", + " {0: 0.7755102040816326,\n", + " 1: 0.8687224669603524,\n", + " 2: 0.6434108527131783,\n", + " 3: 0.36336633663366336,\n", + " 4: 0.9969450101832994,\n", + " 5: 0.968609865470852,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '4_5'},\n", + " {0: 0.6602040816326531,\n", + " 1: 0.8546255506607929,\n", + " 2: 0.5968992248062015,\n", + " 3: 0.2376237623762376,\n", + " 4: 0.9969450101832994,\n", + " 5: 0.9820627802690582,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '4_5'},\n", + " {0: 0.6755102040816326,\n", + " 1: 0.8563876651982378,\n", + " 2: 0.5406976744186046,\n", + " 3: 0.22574257425742575,\n", + " 4: 0.9959266802443992,\n", + " 5: 0.9899103139013453,\n", + " 6: 0.0,\n", + " 7: 0.0,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '4_5'},\n", + " {0: 0.6816326530612244,\n", + " 1: 0.8590308370044053,\n", + " 2: 0.46027131782945735,\n", + " 3: 0.48415841584158414,\n", + " 4: 0.7036659877800407,\n", + " 5: 0.6322869955156951,\n", + " 6: 0.9895615866388309,\n", + " 7: 0.97568093385214,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '6_7'},\n", + " {0: 0.6959183673469388,\n", + " 1: 0.8537444933920705,\n", + " 2: 0.46511627906976744,\n", + " 3: 0.46633663366336636,\n", + " 4: 0.6466395112016293,\n", + " 5: 0.5426008968609866,\n", + " 6: 0.9916492693110647,\n", + " 7: 0.9854085603112841,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '6_7'},\n", + " {0: 0.6489795918367347,\n", + " 1: 0.8414096916299559,\n", + " 2: 0.437015503875969,\n", + " 3: 0.4277227722772277,\n", + " 4: 0.5723014256619144,\n", + " 5: 0.5134529147982063,\n", + " 6: 0.9937369519832986,\n", + " 7: 0.9902723735408561,\n", + " 8: 0.0,\n", + " 9: 0.0,\n", + " 'phase': '6_7'},\n", + " {0: 0.7244897959183674,\n", + " 1: 0.8255506607929516,\n", + " 2: 0.5087209302325582,\n", + " 3: 0.404950495049505,\n", + " 4: 0.37474541751527496,\n", + " 5: 0.4024663677130045,\n", + " 6: 0.8162839248434238,\n", + " 7: 0.5710116731517509,\n", + " 8: 0.9702258726899384,\n", + " 9: 0.9653121902874133,\n", + " 'phase': '8_9'},\n", + " {0: 0.6979591836734694,\n", + " 1: 0.786784140969163,\n", + " 2: 0.45542635658914726,\n", + " 3: 0.3425742574257426,\n", + " 4: 0.31771894093686354,\n", + " 5: 0.33408071748878926,\n", + " 6: 0.791231732776618,\n", + " 7: 0.5671206225680934,\n", + " 8: 0.9784394250513347,\n", + " 9: 0.9682854311199207,\n", + " 'phase': '8_9'},\n", + " {0: 0.6602040816326531,\n", + " 1: 0.7797356828193832,\n", + " 2: 0.47674418604651164,\n", + " 3: 0.37524752475247525,\n", + " 4: 0.3289205702647658,\n", + " 5: 0.3475336322869955,\n", + " 6: 0.7682672233820459,\n", + " 7: 0.5311284046692607,\n", + " 8: 0.9866529774127311,\n", + " 9: 0.9672943508424182,\n", + " 'phase': '8_9'},\n", + " {0: 0.996938775510204,\n", + " 1: 0.9982378854625551,\n", + " 2: 0.5562015503875969,\n", + " 3: 0.5554455445544555,\n", + " 4: 0.5030549898167006,\n", + " 5: 0.36771300448430494,\n", + " 6: 0.6847599164926931,\n", + " 7: 0.7324902723735408,\n", + " 8: 0.7197125256673511,\n", + " 9: 0.8582755203171457,\n", + " 'phase': '0_1_again'},\n", + " {0: 0.996938775510204,\n", + " 1: 0.9982378854625551,\n", + " 2: 0.4844961240310077,\n", + " 3: 0.498019801980198,\n", + " 4: 0.4979633401221996,\n", + " 5: 0.40582959641255606,\n", + " 6: 0.6670146137787056,\n", + " 7: 0.72568093385214,\n", + " 8: 0.6745379876796714,\n", + " 9: 0.8394449950445986,\n", + " 'phase': '0_1_again'},\n", + " {0: 0.9959183673469387,\n", + " 1: 0.9991189427312775,\n", + " 2: 0.4932170542635659,\n", + " 3: 0.5148514851485149,\n", + " 4: 0.505091649694501,\n", + " 5: 0.39798206278026904,\n", + " 6: 0.6524008350730689,\n", + " 7: 0.7227626459143969,\n", + " 8: 0.6714579055441479,\n", + " 9: 0.846382556987116,\n", + " 'phase': '0_1_again'}]" + ] + }, + "metadata": {}, + "execution_count": 20 + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8Yad6wstNUpx" + }, + "source": [ + "# Analysis of the results" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "gimHfUXdW4_K", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 459 + }, + "outputId": "3a07ff95-27df-468d-f571-414c99f1ca1e" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + " epoch 0 1 2 3 4 5 6 7 8 9 phase\n", + "0 0 0.96 0.97 0.82 0.85 0.59 0.35 0.86 0.85 0.52 0.82 baseline" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
epoch0123456789phase
000.960.970.820.850.590.350.860.850.520.82baseline
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " epoch 0 1 2 3 4 5 6 7 8 9 phase\n", + "0 0 1.0 1.0 0.00 0.0 0.00 0.00 0.0 0.00 0.0 0.00 0_1\n", + "1 1 0.0 0.0 0.14 1.0 0.00 0.00 0.0 0.00 0.0 0.00 2_3\n", + "2 2 0.0 0.0 0.00 0.0 0.99 0.89 0.0 0.00 0.0 0.00 4_5\n", + "3 3 0.0 0.0 0.00 0.0 0.00 0.00 1.0 0.93 0.0 0.00 6_7\n", + "4 4 0.0 0.0 0.00 0.0 0.00 0.00 0.0 0.00 1.0 0.52 8_9" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
epoch0123456789phase
001.01.00.000.00.000.000.00.000.00.000_1
110.00.00.141.00.000.000.00.000.00.002_3
220.00.00.000.00.990.890.00.000.00.004_5
330.00.00.000.00.000.001.00.930.00.006_7
440.00.00.000.00.000.000.00.001.00.528_9
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n", + " " + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + " epoch 0 1 2 3 4 5 6 7 8 9 phase\n", + "0 0 1.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0_1\n", + "1 1 0.04 0.51 0.23 1.00 0.00 0.00 0.00 0.00 0.00 0.00 2_3\n", + "2 2 0.71 0.64 0.06 0.00 0.98 0.85 0.00 0.00 0.00 0.00 4_5\n", + "3 3 0.23 0.53 0.00 0.01 0.00 0.00 0.99 0.96 0.00 0.00 6_7\n", + "4 4 0.44 0.55 0.00 0.00 0.00 0.00 0.19 0.00 0.98 0.88 8_9" + ], + "text/html": [ + "\n", + "
\n", + "
\n", + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
epoch0123456789phase
001.000.990.000.000.000.000.000.000.000.000_1
110.040.510.231.000.000.000.000.000.000.002_3
220.710.640.060.000.980.850.000.000.000.004_5
330.230.530.000.010.000.000.990.960.000.006_7
440.440.550.000.000.000.000.190.000.980.888_9
\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + " \n", + "
\n", + "
\n", + " " + ] + }, + "metadata": {} + } + ], + "source": [ + "# The following helper code takes the logs and converts them into a dataframe\n", + "# for easier reading. You can also store the result as a CSV or HDF file by\n", + "# using the .to_csv and .to_hdf methods from pandas for later reading.\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "\n", + "def format_results(history):\n", + " logs = pd.DataFrame(history).round(2)\n", + " logs.index.name = 'epoch'\n", + " logs = logs.reset_index(drop = False)\n", + " return logs\n", + "\n", + "#display(format_results(history_regular_mnist).head())\n", + "display(format_results(history_catastrophic_forgetting).head())\n", + "display(format_results(history_memory_replay).head())" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "id": "jR6eRKn4WguU", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 807 + }, + "outputId": "a20c835b-1f62-4b6c-cd45-745f122a0041" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAMWCAYAAADsxLLYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADNIUlEQVR4nOzdd1hUZ/4+/ntoQ1FQmopix464QcEuKIho2FhiyzeriW5Mc1NM8kmyWVsaiZtC1phNMyZmN8YWjSbSRJSosQvYxYoNpQ59gJnn90d+MyuieAZm5ky5X9d1LmFg5twHyDvvec5znqMQQggQERERUaMc5A5AREREZA3YNBERERFJwKaJiIiISAI2TUREREQSsGkiIiIikoBNExEREZEEbJqIiIiIJGDTRERERCQBmyYiIiIiCdg0EREREUkga9OUkZGBuLg4BAQEQKFQYPPmzXLGISI7x5pERI2RtWmqqKhASEgIVqxYIWcMIiIArElE1DgnOXceGxuL2NhYOSMQEemxJhFRY2RtmgylVquhVqv1nwshUFNTA19fXygUChmTEZE9Yk0isi9WNRE8Pj4eXl5e+q1Vq1bw9/dHWVlZo8/TarVQKBRm2x588EEz/USI7q+wsBDOzs5m+/ufNm2a3IdsNk2tSYsWLTJrTWrbti0+//xz1NbWmuknQ3R3VVVVGDRokFn//k+ePGm0/FY10vT6669jwYIF+s9LS0sRGBgo6bkvv/yyqWLplZeX4/PPP8eOHTtQXV0NV1dXk++T6H62b9+Ouro6dOjQATNmzDD5/vr372/yfViKptakYcOGmaUmabVabN68GRcuXMDTTz+Njz76CO+++y6mTJnCkTAyOyEE/vrXv+LQoUPw8fHBY489Zpa/Qx8fH+O9mLAQAMSmTZsMeo5KpRIAhEqlMk0oA2m1WhEQECAAiNTUVLnjEAkhhHj88ccFAPHSSy/JHcWq2EJNEkIItVotli9fLvz8/AQAAUCEhYWJ9PR0uaORnXn//fcFAOHk5GS1f3+ST885ODjA0dFR/y81pFAoMHbsWABAcnKyzGmI/nhnp/tbjImJkTmN8bAeSefi4oL58+fj/PnzWLx4MTw8PHDgwAFERkZi/PjxyM7Oljsi2YFff/0Vr732GgDgk08+QUREhLyBmkhy03Tx4kVcuHBB/68xlJeXIzMzE5mZmfp9ZGZmIjc31yivL4dx48YBAJKSkmROQgQcP34c169fh5ubG0aMGCF3HKMxRT0CbLMm6bRs2RJLlizB+fPn8eyzz8LJyQmJiYkYMGAAZs+ejcuXL8sdkWzUqVOn8Mgjj0AIgXnz5uHpp5+WO1LTyTnMlZ6erh8uvn2bPXu2pOdb4lB4QUGBUCgUAoC4evWq3HHIzv3zn/8UAERsbKzcUayCLdake8nJyRHTp0/XH6OLi4tYsGCBKCgokDsa2ZCioiLRvXt3AUCMGDFCqNVquSM1i0IIIQxpsg4cOIDff/8deXl5AIC2bdtiyJAhCAsLM0YPZ5DS0lJ4eXlBpVLB09PT7Pu/l/DwcBw4cADffPMNHn/8cbnjkB2Ljo7G9u3bkZCQgOeff17uOEZnSfUIsNya1JhDhw7h1VdfxY4dOwAAnp6emDdvHqKiojBs2DC0aNFC5oRkrerq6jB+/HikpqaiY8eOOHjwIPz9/eWO1TxSu6ubN2+K4cOHC4VCITp16iTCwsJEWFiY6NSpk1AoFGL48OHi5s2bpmvv7sJS39UtXLhQABDTp0+XOwrZsYqKCqFUKgUAcerUKbnjGJUl1iMhLLcm3Y9WqxXJycliwIAB9UbYnJycxJAhQ8Trr78uUlJSRHl5udxRyYq8+OKLAoBwd3cXR48elTuOUUgeaXr44Ydx/fp1rFq1Cj179qz3tTNnzmDOnDkICAjA+vXrjdrUNcZS39Xt2bMHw4cPh7e3N27dusWJqiSLxMREjB8/Hh07dsSlS5ds6hJzS6xHgOXWJKm0Wi02bdqEX375Benp6Q3mOTk7OyMsLAwRERGIjIzEkCFD4O7uLlNasmTfffcdHnvsMQDA+vXr8fDDD8sbyEgkN00tW7ZERkYG/vSnP93164cPH0ZERMR9F3UzJkstUHV1dfD19YVKpcK+ffsQHh4udySyQ88//zz+9a9/Yd68efjiiy/kjmNUlliPAMutSU116dIl7Ny5E+np6UhPT8eVK1fqfd3Z2Rnh4eGIjIzEgAEDEBQUhG7duhm1kaqursb58+eRk5ODyspKTJgwAV5eXkZ7fTK+ffv2YdSoUaipqcGiRYuwdOlSuSMZjeTFLZVKJUpLS+/59bKyMiiVSqOEsnZOTk6IiorCxo0bkZyczKaJZGGLSw3osB6ZR+fOnfHYY4/hsccegxACFy9erNdEXbt2Dbt378bu3bvrPa9Dhw4ICgpC9+7dERQUpN+6det210V/1Wo1Lly4gJycnHrbuXPncOXKFdz+3r5FixZ47LHHMH/+/AajjCS/a9euYdKkSaipqcGkSZOwePFiuSMZl9TzeM8884zo1KmT+Omnn+qdr1epVOKnn34SnTt3FvPnzzfy2cPGWfL8gS+//FIAEEOHDpU7CtmhS5cuCQDC0dFRlJSUyB3H6CyxHun2b6k1ydi0Wq04d+6c+Oqrr8Rf/vIXMWjQINGqVau7Xn2o2xQKhQgMDBSjR48Ws2fPFlFRUfp5aI09z9PTU4SGhoqePXvWe3zcuHEiMTFRaDQauX8cJISorKwUAwcOFABEv379RFlZmdyRjE7y6Tm1Wo0XXngB33zzDerq6uDi4gIAqKmpgZOTE+bOnYuPP/7YrO/uLHkoPDc3F506dYKjoyMKCgrQqlUruSORHfnyyy/x5JNPYtiwYQ1GAWyBJdYjwLJrkjkIIVBUVHTXEaOcnByoVKp7Prdly5Z3HZ3q3r07/Pz8oFAoIIRAWloaPvnkE/z666/6EaiePXvib3/7G2bPns2r/fDHSOuePXuwc+dO3LhxA61bt4aPjw+8vb3h7e2t/1j3r6enZ7PnPAoh8Oijj+KHH36Aj48PDh48iC5duhjpiCyHwUsOlJaW4tChQ7h58yaAPy7xDQ0NlaVAWHqB6t27N06fPo0NGzZgypQpcschOzJlyhT89NNPePPNN7Fw4UK545iMJdUjXR5LrklyEkKgoKBA30hdvXoVAQEB+ubI39/foP9xnzt3Dp9++im++eYb/dw1T09PzJ07F/Pnz0fXrl1NdSiNqqmpQVFRkX4rLCy868dlZWXo1q0b+vfvj/79+6Nfv35NbvjKy8v1TVJ6ejoOHToEjUYj+fmOjo76hsrb2xvt27ev17hK+f0sW7YMr776KhwdHZGamorIyMgmHYulM7hpsiSWXqBefPFFJCQk4K9//Su++uorueOQnaitrYWvry9KS0tx4MABDBo0SO5IdsPSa5ItKisrw7fffovly5cjJycHwB+3tIqLi8Pzzz+PyMhIaLVaqFQqfdNyt0bm9sfUarVBGYQQUKlUKCoqQnl5eZOP5fYmSrd17doVDg71b95RWVlZr0k6ePAg6urq6n1Ply5dEBERgZ49e6KkpKTBcer+raqqkpStZcuWdx0FDAoKwsGDBxEXFwchBFasWIFnnnmmyT8DSye5aVq9enW9z2fNmmWSQIaw9AKVlJSE2NhYBAYG4vLlyzZ1yTdZrt27d2PEiBHw8fHBzZs3bXLJC0usR4Dl1yRbptVqkZycjE8++aTevT9btGiBiooKmHN8QKFQoHXr1vc8Hebt7Q03NzecPXsW2dnZyM7Oxo0bN+76Wh4eHujXrx/69+8Pb29v7N69GwcOHEBtbW297+vUqRMiIyMRERGBiIgIdOrUSVLWqqqqeg1kYWEhcnNz651ezc3NlfTzmzdvHj7//HOb/n+d5Kbp9qE2hUKhXz1WTpZeoCorK+Ht7Q21Wo2TJ0+id+/eckciO7Bw4UK8/fbbmDFjBtasWSN3HJOwxHoEWH5NshenT5/G8uXL8d1336GiokL/eIsWLe7ZxNzZ0BjK09NT/zpeXl4Gv1nJz8/HsWPH9E1UdnY2jh8/fs9Rr8DAQH2TFBkZic6dOxucWarq6mpcvHixwVy1nJwc/TIUo0aNQkpKin5+oa3i6TkTGzt2LFJTU/Hxxx/jhRdekDsO2YGwsDAcPHgQq1at0i8uR+ZhDTXJnpSVleHKlSv6Zsja/odeV1eHc+fO6ZuoW7duYfDgwYiIiECXLl0sYkSnqqoKV69eRadOnazu59sUbJpM7MMPP8TLL7+McePGITExUe44ZOMKCgrg7+8PIQSuXbuGgIAAuSPZFWuoSUTUdA73/xZqDt3Cgjt37pQ84Y6oqVJTUyGEQHBwMBsmIiIjY9NkYn379kX79u1RXV2N3377Te44ZON0E2DHjRsncxIiItvDpsnEFAqFfrTp9is6iIxNCIGUlBQAtnnrFCIiubFpMgM2TWQOx44dw40bN+Du7o7hw4fLHYeIyOYY3DStWrUK69evb/D4+vXr8d133xkllK2JioqCg4MDTpw40eAu4UTGkpSUBACIiIiwm5vVsh4RkTkZ3DTFx8fD19e3weP+/v549913jRLK1nh7e+tXZdadPiEyNt1Ipj2dmmM9IiJzMrhpys3NvetN+Dp16oTc3FyjhLJFuom5PEVHplBRUaG/Ma89TQJnPSIiczK4afL390d2dnaDx7OysuDj42OUULZI9+5/+/btBt1IkUiKnTt3oqamBp07d0ZQUJDcccyG9YiIzMngpmnmzJl47rnnkJ6eDo1GA41Ggx07duD555/HjBkzTJHRJgwaNAitWrVCcXExDh48KHccsjG3n5qzhFWCzYX1iIjMycnQJ7z11lu4dOkSxowZAyenP56u1Woxa9YsziFohJOTE6KiorBhwwYkJSVh8ODBckciG6KbBG5P85kA1iMiMq8m30YlJycHmZmZcHNzQ3BwsOQ7KhuTtd2y4Ouvv8YTTzyBwYMH4/fff5c7DtmIixcvomvXrnB0dERhYSG8vLzkjmR2llCPAOurSURkGINHmnSCgoLsau6EMehGAQ4cOIDi4mK0bt1a5kRkC3Sn5oYOHWqXDRPAekRE5mHwnKYpU6bg/fffb/D4smXLMHXqVKOEslWBgYHo06cPtFottm/fLnccshH2uNSADusREZmTwU1TRkYGxo8f3+Dx2NhYZGRkGCWULePq4GRMtbW1SEtLA2CfTRPrERGZk8FNU3l5OVxcXBo87uzsjNLSUqOEsmW6/7ElJSWhidPJiPR+//13lJWVwdfXFw888IDcccyO9YiIzMngpik4OBhr165t8PiPP/6IPn36GCWULRs5ciRcXV1x7do1nDx5Uu44ZOV0I5bR0dFwcLC/W0myHhGRORk8EXzhwoWYPHkyzp8/j9GjRwMA0tLSsGbNmrveA4rqc3Nzw6hRo5CcnIzk5GT07dtX7khkxXRNkz2tAn471iMiMieD35rGxcVh8+bNOHfuHJ555hm89NJLuHr1KrZv346JEyeaIKLt4bwmMoZbt27h8OHDAICxY8fKnEYerEdEZE5NXqfpbo4fP45+/foZ6+Xuy1rXRDl58iT69u0LpVKJoqIiuLu7yx2JrNB///tfPProowgJCUFmZqbccSyOuesRYL01iYikafYkiLKyMnz55ZcICwtDSEiIMTLZvN69e6NDhw5Qq9W8woeazJ6XGrgX1iMiMqUmN00ZGRmYNWsW2rVrhw8++ACjR4/Gvn37jJnNZikUCp6io2bRarVISUkBwKYJYD0iIvMwaCJ4Xl4evv32W6xcuRKlpaWYNm0a1Go1Nm/ezCtVDDRu3DisXLmSTRM1SXZ2Nm7evAkPDw8MGzZM7jiyYD0iInOTPNIUFxeHnj17Ijs7GwkJCbh+/TqWL19uymw2bcyYMXBwcMCpU6eQm5srdxyyMrpmOzIyEkqlUuY05sd6RERykNw0JSYmYu7cuVi6dCkmTJgAR0dHo4VYsWIFOnfuDFdXV4SHh+PAgQNGe21L1bp1a4SHhwPgKToyXFJSEgD7PTXHekREcpDcNO3evRtlZWUIDQ1FeHg4Pv30UxQUFDQ7wNq1a7FgwQIsXrwYR44cQUhICGJiYnDr1q1mv7al47wmaory8nLs2bMHgP02TaxHRCQLYaDy8nKxcuVKMWzYMOHs7CwcHBxEQkKCKC0tNfSlhBBChIWFiWeffVb/uUajEQEBASI+Pv6+z1WpVAKAUKlUTdq33H7//XcBQHh5eYna2lq545CV2LJliwAgunTpIrRardxxZGVJ9UgI669JRNS4Zq3TdObMGaxcuRLff/89SkpKEB0djS1btkh+fk1NDdzd3bFhw4Z6C9HNnj0bJSUl+Pnnnxt9vrWviaLRaODn54fi4mI8+eST8PHxkTsSWYGMjAzs3r0bTz31FP7973/LHcdiyF2PAOuvSUTUOINvo3K7nj17YtmyZYiPj8fWrVvxzTffGPT8goICaDQatGnTpt7jbdq0wenTpxt8v1qthlqt1n9u7TfkdHR0RExMDH788Ud88cUXcschKxMbGyt3BIti7noE2F5NIqLGGeUOn46Ojpg4caJB7+qaIj4+Hl5eXvotMDBQ8nPVajWWLFlSr8BZgjVr1kAIYfKturoaixcvRnV1tVn2Z2mbLR7/n//8Z8l/Z5b6928K5qpHgG3WJHPh8fP4rfH4jXobFUMZOhx+57s6IQRqamrg6+sLhULR6L7sfdicx8/jt+fjl6Ipp+dYk5qOx8/jt8bjN8pIU1O5uLggNDQUaWlp+se0Wi3S0tIwZMiQBt+vVCrh6emp37y8vODn53ff4kREdD+G1iOANYnI3jRrTpMxLFiwALNnz8bAgQMRFhaGhIQEVFRU4PHHH5c7GhHZGdYjImqM7E3T9OnTkZ+fj0WLFiEvLw8DBgxAUlJSg8mYRESmxnpERI2RvWkCgPnz52P+/Pkm3YdSqcTixYvt8pYTAI+fx2/fx28Ic9QjgL8THj+P3xqPX9aJ4ERERETWQtaJ4ERERETWgk0TERERkQRsmoiIiIgkYNNEREREJAGbJiIiIiIJ2DQRERERScCmiYiIiEgCNk1EREREErBpIiIiIpKATRMRERGRBGyaiIiIiCRg00REREQkAZsmIiIiIgnYNBERERFJwKaJiIiISAI2TUREREQSsGkiIiIikkDWpikjIwNxcXEICAiAQqHA5s2b5YxDRHaONYmIGiNr01RRUYGQkBCsWLFCzhhERABYk4iocU5y7jw2NhaxsbFyRiAi0mNNIqLGcE4TERERkQSyjjQZSq1WQ61W6z8XQqCmpga+vr5QKBQyJiMie8SaRGRfrKppio+Px9KlSxs8rlKp4Onpec/nabVaLFiwwJTRAADl5eVYuXIl3N3dUVRUBKVSafJ9Et3P+vXrMW3aNLRv3x4PP/ywyfc3YMAAPPbYYybfjyVoak3atm0bUlJSTBkNwB9NXE5ODtLT01FdXa1/3MXFBSNHjkRsbCzGjx+Pnj17sskjkxJC4LPPPsMLL7yAuro69O3bF1FRUWbZ92uvvYa2bdsa5bUUQggh5Rtzc3Prfd6xY0ejBNAHUSiwadMmTJw48Z7fc+e7utLSUgQGBt63QJmLEALt27fHjRs3sH37dowZM0buSESYO3cuvvnmGyxYsAAffvih3HGMwtT1CLCNmqRTVVWFnTt3Ytu2bdi2bRsuXLhQ7+tdunTRN1CRkZFwd3eXKSnZoqqqKjz11FNYvXo1AGDGjBn4+uuv4eHhIXMyw0keaercuTMUCgWEEFAoFNBoNKbMdVdKpdKiR28UCgXGjh2L7777DsnJyWyaSHZCCCQnJwMAYmJiZE5jPJZQjwDLr0k6bm5u+knu//rXv5CTk4Nt27YhMTERO3fuxMWLF/HZZ5/hs88+g1KpRGhoKIKCgvRb9+7dERQUhJYtW8p9KGRlLl26hMmTJ+Po0aNwdHTEsmXL8OKLL1rtyKbkpkmr1Rp95+Xl5Th37pz+84sXLyIzMxPe3t4meedoDjExMfqmadmyZXLHITt38uRJXLt2Da6urhgxYoTccYzGFPUIsM2adCeFQoEePXqgR48eeOGFF1BRUYH09HT9KNTly5exd+9e7N27t8Fz27Rp06CR0n3cokULGY6GLNn27dsxY8YMFBYWws/PD2vXrkVkZKTcsZpF8uk5U9i5c+ddf4CzZ8/Gt99+e9/nl5aWwsvLy6KGwgsKCuDv7w8hBK5du4aAgAC5I5Ed++ijj/DSSy8hJiYGSUlJcsexeLZYkwwhhMCZM2eQnZ2NnJycelt+fn6jz/Xx8UGHDh3Qvn37ev/e/rGnp2ejIwxCCJSXl6OwsBBFRUX6f3UfV1ZWonXr1vD29oa3tzd8fHzq/ducUT8hBNRqNaqqqpo0cuni4gI3Nzc4Ozs3OYOtEELgn//8J15//XVotVoMHDgQP/30EwIDA+WO1mxGmwheXFyMrVu3YtasWZKfExERARl7NpPw9fXFwIEDcfDgQaSkpNjNhFiyTLpGady4cTInMa+m1CPANmuSIRQKBXr16oVevXo1+JpKpcK5c+caNFM5OTkoLCzUb1lZWfd8fQ8PD30T1aZNG1RUVDRokOrq6pqc38PDo14T5e3tDTc3N1RVVaGyshJVVVX67c7Pq6qqjPK7d3R0hLu7O9zc3Optdz4m5XukPM/R0bHZmY2prKwMc+bMwYYNGwAAc+bMwYoVK+Dq6ipzMuMw2khTVlYWHnjgAbPOLbDUd3ULFy7E22+/jRkzZmDNmjVyxyE7VVlZCW9vb6jVapw8eRK9e/eWO5LZyFGPAMutSaZWUlKCK1eu4Nq1a7h69ar+39s/Li4ulvx6SqWyXuOj+9jNzQ0qlarBCFRxcbHJTtlaOmdn50YbK29v73qnUoOCguDj42OSOUVnz57FpEmTcPLkSTg7O2P58uWYN2+e1c5fuhvJI02lpaWNfr2srKzZYWxFTEwM3n77baSmpkKj0VjcOwGyDxkZGVCr1QgMDLzryIE1Yz2yLK1atUKrVq0QHBx8z++prKys11TdvHkTLVu2bDAy5OPjAzc3N4P+R6vVaqFSqeo1Urp/1Wp1oyM5d3vcycmwkzC69bkaG8Uy5PG7fd/tj91+xWZtbS1UKhVUKpXkvK1atWrQSOnmpvn4+Bh07DpbtmzBX/7yF5SWliIgIAAbN27E4MGDm/RalkzyX0arVq3uey7alrrJ5ggPD4enpycKCwtx5MgRDBo0SO5IZIduv2rO1v7bZD2yPu7u7vr/ORubg4MDWrdujdatW6Nbt25Gf30pdA2XOWi1WsmN161bt+qdSr169SpKSkpw6NAhHDp0qMFrt27dGm3btjXoNOHly5fxySefAABGjBiBdevWGW1dJEsjuWlq2bIl3njjDYSHh9/16zk5OXjyySeNFsyaOTs7Y8yYMdi0aROSk5PZNJEsbHGpAR3WI7JnDg4O8PDwaNI6R5WVlbhw4UKDeWnnzp3DtWvXUFxcbNCp1Ns999xz+OCDD2x6MrzkpumBBx4AAIwaNequX2/VqpVdT6C807hx47Bp0yYkJSXhH//4h9xxyM7k5ubi1KlTcHR0NNuqu+bEekTUNO7u7ujXrx/69evX4GsVFRU4f/48ioqKDDqFWFtbi6lTp2Lq1KkyHJF5SW6aHnnkEVRVVd3z623btsXixYuNEsoW6N7d79u3DyqVCl5eXjInInuiG2UKDw9Hq1at5A1jAqxHRMbn4eGB/v37yx3Dosm6TlNzWfqVKr169cKZM2ewceNGTJ48We44ZEcefvhhbNy4EUuXLsWiRYvkjmM3LL0mEVHzOMgdwJbpRpt07/qJzKGurg7bt28HYJvzmYiI5CL59JzuRns6hi4aZ49iYmLwr3/9C8nJybyah8zmwIEDUKlU8Pb2xsCBA+WOYxKsR0QkB8lN06pVq/QfKxQKFikJRo0aBRcXF1y+fBlnzpyxubVyyDLpVgGPioqy2TXCWI+ISA6Sm6b09HRT5rBJHh4eGDlyJLZv347k5GQ2TWQWutPBtnzrFNYjIpID5zSZGOc1kTkVFhbi4MGDAICxY8fKnIaIyLawaTIxXdO0c+dOVFdXy5yGbN327dshhEC/fv3Qvn17ueMQEdkUNk0m1q9fPwQEBKCqqgq7d++WOw7ZOFteBZyISG5smkxMoVDoT5PoJugSmYIQgk0TEZEJsWkyA92EXM5rIlM6fvw4rl+/Djc3N4wYMULuOERENsfgpmnVqlVYv359g8fXr1+P7777ziihbE1UVBQUCgWOHz+Oa9euyR2HbJSuKY+IiICrq6vMacyD9YiIzMngpik+Ph6+vr4NHvf398e7775rlFC2xsfHB4MGDQIApKSkyJyGbJU9nppjPSIiczK4acrNzUWXLl0aPN6pUyfk5uYaJZQt4tIDZEoVFRXIyMgAYF9NE+sREZmTwU2Tv78/srOzGzyelZUFHx8fo4SyRbr/kaWkpECj0cichmzNrl27UFNTg44dO6Jnz55yxzEb1iMiMieDm6aZM2fiueeeQ3p6OjQaDTQaDXbs2IHnn38eM2bMMEVGmxAeHg4vLy8UFxfj0KFDcschG3P7qTl7usch6xERmZPk26jovPXWW7h06RLGjBkDJ6c/nq7VajFr1izOIWiEk5MToqKisHHjRiQnJyM8PFzuSGRD7OHWKXfDekRE5qQQQoimPDEnJweZmZlwc3NDcHAwOnXqZOxs91VaWgovLy+oVCp4enqaff+G+uqrrzBv3jwMHToUe/bskTsO2YhLly6hS5cucHR0RGFhIby8vOSOZHaWUI8A66tJRGQYg0eadIKCghAUFGTMLDZPN69p3759KC4uRuvWrWVORLZAN8o0ePBgu2yYANYjIjIPg+c0TZkyBe+//36Dx5ctW4apU6caJZSt6tixI3r16gWtVou0tDS545CNsMelBnRYj4jInAxumjIyMjB+/PgGj8fGxuoveaZ749IDZEy1tbX6BtwemybWIyIyJ4ObpvLycri4uDR43NnZGaWlpUYJZctuv6VKE6eTEent378fpaWl8PHxQWhoqNxxzI71iIjMyeCmKTg4GGvXrm3w+I8//og+ffoYJZQtGzlyJJRKJa5cuYLTp0/LHYesnG7EMjo6Go6OjjKnMT/WIyIyJ4Mngi9cuBCTJ0/G+fPnMXr0aABAWloa1qxZc9d7QFF97u7uGDlyJFJTU5GUlITevXvLHYmsWFJSEgD7PDUHsB4RkXkZPNIUFxeHzZs349y5c3jmmWfw0ksv4erVq9i+fTsmTpxogoi2h/OayBgKCgpw+PBhAMDYsWNlTiMP1iMiMqcmr9N0N8ePH0e/fv2M9XL3Za1rohw/fhzBwcFwdXVFUVER3Nzc5I5EVmjNmjV45JFHEBwcfNdbidg7c9cjwHprEhFJY/BI053Kysrw5ZdfIiwsDCEhIcbIZPP69u2L9u3bo7q6Gr/99pvccchK2esq4I1hPSIiU2py05SRkYFZs2ahXbt2+OCDDzB69Gjs27fPmNlslkKh4Ck6ahYhhF2vz3Qn1iMiMgeDmqa8vDy89957CAoKwtSpU+Hl5QW1Wo3Nmzfjvffew6BBg0yV0+bo/kenm8hLZIjs7Gzk5eXB3d0dw4cPlzuOLFiPiMjcJDdNcXFx6NmzJ7Kzs5GQkIDr169j+fLlpsxm06KiouDg4ICTJ0/iypUrcschK6MbZYqIiIBSqZQ5jfmxHhGRHCQ3TYmJiZg7dy6WLl2KCRMmGHVNmBUrVqBz585wdXVFeHg4Dhw4YLTXtlTe3t76d8IpKSkypyFrY++n5liPiEgOkpum3bt3o6ysDKGhoQgPD8enn36KgoKCZgdYu3YtFixYgMWLF+PIkSMICQlBTEwMbt261ezXtnSc10RNUVFRgd27dwOw36aJ9YiIZCEMVF5eLlauXCmGDRsmnJ2dhYODg0hISBClpaWGvpQQQoiwsDDx7LPP6j/XaDQiICBAxMfH3/e5KpVKABAqlapJ+5bb3r17BQDRunVrUVtbK3ccshK//PKLACA6d+4stFqt3HFkZUn1SAjrr0lE1LhmrdN05swZrFy5Et9//z1KSkoQHR2NLVu2SH5+TU0N3N3dsWHDhnoL0c2ePRslJSX4+eefG32+ta+JUldXBz8/P5SUlGD+/Pnw9fWVOxJZgfT0dOzatQtPPvkkPv/8c7njWAy56xFg/TWJiBpn8G1UbtezZ08sW7YM8fHx2Lp1K7755huDnl9QUACNRoM2bdrUe7xNmzZ3vS+bWq2GWq3Wf27tN+R0cnLC2LFjsW7dOnz66adyxyErw/WZ6jN3PQJsryYRUeOavbglADg6OmLixIkGvatrivj4eHh5eem3wMBAyc9Vq9VYsmRJvQJnCdauXQshhMm36upqLF68GNXV1WbZn6Vttnj8htwmxFL//k3BXPUIsM2aZC48fh6/NR6/UW+jYihDh8PvfFcnhEBNTQ18fX2hUCga3Ze9D5vz+Hn89nz8UjTl9BxrUtPx+Hn81nj8RhlpaioXFxeEhoYiLS1N/5hWq0VaWhqGDBnS4PuVSiU8PT31m5eXF/z8/O5bnIiI7sfQegSwJhHZm2bNaTKGBQsWYPbs2Rg4cCDCwsKQkJCAiooKPP7443JHIyI7w3pERI2RvWmaPn068vPzsWjRIuTl5WHAgAFISkpqMBmTiMjUWI+IqDGyN00AMH/+fMyfP9+k+1AqlVi8eLFd3nIC4PHz+O37+A1hjnoE8HfC4+fxW+PxyzoRnIiIiMhayDoRnIiIiMhasGkiIiIikoBNExEREZEEbJqIiIiIJGDTRERERCQBmyYiIiIiCdg0EREREUnApomIiIhIAjZNRERERBKwaSIiIiKSgE0TERERkQRsmoiIiIgkYNNEREREJAGbJiIiIiIJ2DQRERERScCmiYiIiEgCNk1EREREEsjaNGVkZCAuLg4BAQFQKBTYvHmznHGIyM6xJhFRY2RtmioqKhASEoIVK1bIGYOICABrEhE1zknOncfGxiI2NlbOCEREeqxJRNQYzmkiIiIikkDWkSZDqdVqqNVq/edCCNTU1MDX1xcKhULGZERkj1iTiOyLVTVN8fHxWLp0aYPHVSoVPD09ZUjUfCdOnMB7772HkpISVFVVoaqqCpWVlfqPb39Mq9U2e3+XLl1Cp06djJCciGytJgkh8P777+PAgQP3rEO6j29vFptCoVBg0aJFWLJkiXHCE5mBQggh5A4B/PEf0KZNmzBx4sR7fs+d7+pKS0sRGBhotQUKAB566CFs2bLFoOcoFAq4ubnBzc0N7u7u+o9v3+58/Ndff8W5c+fw73//G0899ZSJjobIdthjTTp69CgeeOABg5/n7OwMR0dHg55TXV0NAFi1ahUee+wxg/dJJAfJI00ODg5QKBQQQkChUECj0Zgy110plUoolUqz79dU1Go1tm/fDuCPd6wdO3ZstBnSPebi4mLw0L+fnx/+8Y9/ICkpiU0TWT1LqEeA7dWkbdu2AQDCw8Px9NNPN1qHbt8MbZgAYNGiRXjrrbcwb948dO3aFSNHjjT24RAZneSm6eLFi0bfeXl5Oc6dO1dvH5mZmfD29kbHjh2Nvj9Lk5GRgcrKSrRr1w6vvvqqSedAxMbG4h//+AfS0tJQU1MDFxcXk+2LyNRMUY8A1iRd0/T4449j9uzZJt3XkiVLcObMGaxbtw6TJk3C/v370b17d5Puk6jZhIzS09MFgAbb7NmzJT1fpVIJAEKlUpk2qIm88MILAoCYM2eOyfel0WhEmzZtBACRlpZm8v0RWSN7rkkFBQXCwcFBABCXL182yz4rKyvFoEGDBADRq1cvUVxcbJb9EjWVwUsO3GsyslarRW5urkGvFRERASFEg+3bb781NJZV0r2rGz9+vMn35eDggJiYGABAUlKSyfdHZA7GrEeAfdeklJQUaLVa9OvXz2yjam5ubvj555/RoUMHnD59GtOmTUNtba1Z9k3UFJKbptLSUkybNg0eHh5o06YNFi1aVG8eQX5+Prp06WKSkLbo3LlzOHv2LJycnBAdHW2WfeoW7UtMTDTL/ohMhfXI+H799VcAwIQJE8y633bt2mHr1q3w8PBAamoqnnvuOQjLuD6JqAHJTdPChQuRlZWF77//Hu+88w5Wr16Nhx56CDU1Nfrv4R+6dLpRphEjRpjtKpvo6Gg4ODjg+PHjuHLliln2SWQKrEfGpdFo9CPQ5hj5vtOAAQPwww8/QKFQ4PPPP8fy5cvNnoFICslN0+bNm/HFF1/g4Ycfxl//+lccOnQI+fn5iIuL019yy8XcpDPnqTkdHx8fhIWFAQCSk5PNtl8iY2M9Mq6DBw+isLAQXl5eGDJkiCwZ/vznP2PZsmUAgBdffJEj4mSRJDdN+fn59RZF9PX1xfbt21FWVobx48ejsrLSJAFtUUVFBXbu3AnA/O/qeIqObAHrkXHp3sSNHTsWzs7OsuV46aWXMHfuXGi1WkyfPh3Hjx+XLQvR3Uhumjp27IhTp07Ve6xly5ZISUlBVVUVJk2aZPRwtio9PR1qtRqdOnVC7969zbrvcePGAQC2b9/OCZdktViPjEuOke+7USgU+OyzzxAREYGysjI8+OCDuHXrlqyZiG4nuWkaO3YsVq1a1eDxFi1aIDk5Ga6urkYNZstuL1DmPoUwcOBA+Pr6orS0FL///rtZ901kLKxHxpOXl4fDhw8D+N+bKjm5uLhg48aN6N69Oy5fvoyJEyfqVw8nkpvkpmnp0qX3vEdQy5YtkZqaih07dhgrl80SQsh2lQpQf+kBnqIja8V6ZDy6OjBw4EC0bdtW5jR/8Pb2xi+//IJWrVrh999/x9y5czmxnyyC5KapdevW6Nu37z2/3rJlS4waNcoooWzZyZMnkZubC6VSicjISFky6N5Nsmkia8V6ZDyWcmruTj179sSGDRvg5OSEH374Ae+8847ckYik30Zl9erV9T6fNWuW0cPYA12BioyMhLu7uywZYmJioFAokJWVhevXryMgIECWHERNxXpkHLW1tUhJSQFgeU0TAIwZMwYrVqzAk08+iYULF6JHjx6YNm2a3LHIjklumm6fP6BQKFikmsgS3tX5+flh4MCBOHjwIJKTk/H444/LloWoKViPjGPv3r0oLS2Fr68vBg4cKHecu5o3bx5Onz6Njz/+GI8++ig+/vhjBAUF1du6d+8OLy8vuaOSHZDcNKWnp5syh11QqVTYvXs3gP9d+i+XcePG4eDBg0hMTGTTRFaH9cg4dG/ixo0bB0dHR5nT3Ns///lPXLp0CZs2bcK+ffuwb9++Bt/j5+fXoJEKCgpCjx490KJFCxlSky2S3DRR823fvh11dXXo0aOH7Hfzjo2NxVtvvYXU1FTU1dXByYl/CkT2xhJGvqVwdHTExo0bkZ2djTNnzuDcuXPIycnRb7du3UJ+fj7y8/Oxd+/ees91cHBA3759ER4ejvDwcAwePBi9e/e26CaRLBf/T2lGcl41d6ewsDC0bt0axcXF2L9/P4YNGyZ3JCIyo9zcXBw/frzeFbWWTKFQICQkBCEhIQ2+VlpaipycnAbNVE5ODgoKCnDs2DEcO3YMX3/9NYA/lqYYNGiQvokKDw+3mCsH7UFVVRVOnTqFnj17wsPDQ+44BmHTZCZarVZ/tZolvKtzdHTE2LFjsXbtWiQmJrJpIrIzulGmIUOGwNvbW+Y0zePp6YnQ0FCEhoY2+Nr169exf/9+7N+/H/v27cOhQ4dQXl6O9PT0eqd5O3bsqG+iRowYgdDQUDg4SL7AnO7j/Pnz2LZtGxITE5Geno7q6moolUqMGjUK48ePR2xsLIKCgiz+9kcKYcWLX5SWlsLLywsqlcpsN71tqiNHjiA0NBQeHh4oLCyEUqmUOxK+++47PPbYYwgNDcWhQ4fkjkNk9aypJv35z3/G1q1b8c477+Dvf/+73HHMpq6uDidPnqzXSJ08ebLBOlB+fn4YN24cxo8fj7Fjx1p9Y2lu1dXVyMjIQGJiIrZt24azZ8/W+3qLFi1QXl5e77Fu3brpG6iIiAi4ubmZM7IkbJrM5O2338bChQvx0EMPYfPmzXLHAfDHSsDt2rXTf9ymTRuZExFZN2upSdXV1fDx8UFlZSWOHj2KAQMGyB1JVqWlpTh06BD279+P33//HTt37kRZWZn+6w4ODhg8eLD+f+gDBgyw2FGogoICZGRkYOfOndi5cyeKi4vRt29f9O/fX7/16tULLi4uRt/3pUuXkJiYiMTERKSlpdW7B6STkxOGDx+O2NhYjB8/Hn379sXp06f1TVVGRka9W3u5urpi9OjR+u/v2rWrwXm0Wi2qqqrg5uZmtN+XwU3TqlWr0KJFC0ydOrXe4+vXr0dlZSVmz55tlGBSWEuBAoChQ4fi999/xxdffIF58+bJHUfvgQcewNGjR/Hdd9/xsm2yOpZUjwDrqUkpKSmIiYlBu3btcO3aNYs/JWJuNTU12Lt3L7Zt24Zt27bhxIkT9b7etm1b/ShUdHQ0WrVqJel1tVotqqurUVVVhdraWvj4+DT7BslFRUXIyMhAeno6du7ciezs7Ps+x8nJCb17967XSIWEhKBt27Z3/VsQQqC8vByFhYUoKipCUVGR/uPCwkLk5eUhPT0dJ0+erPe8du3aYfz48Rg/fjyioqIa/W+irKwMO3bs0J/Cu3LlSr2v9+jRAyNGjIAQAlVVVfW2ysrKu35eU1MDADh79iyCgoKk/Djvy+CmqUePHvjiiy8arGa9a9cuzJs3D2fOnDFKMCmspUAVFBTA398fQgjk5uYiMDBQ7kh6b7zxBt59913MnDkTP/zwg9xxiAxiSfUIsJ6a9MILL+CTTz7B3Llz9ZOj6d5yc3P1IyJpaWmoqKjQf83R0RFDhgyBn59fo/8jr6qqanAPPYVCgbZt26J9+/bo0KEDOnTooP/49n9vXwi5uLhYP5KUnp6O7OzsBqcW+/bti4iICERGRqJdu3Y4fvw4srOz9ZtKpbrrcfr4+KB///5o2bJlvQapqKhI0g3eHR0dMXToUP3oUP/+/ZvUkAshcOLECX0DtXv3btTV1Rn8OjpZWVno379/k59/O4ObJldXV5w+fRqdO3eu9/ilS5fQu3dvVFVVGSWYFNZSoP773//i0UcfRf/+/ZGVlSV3nHp+++03jBw5Et7e3rh16xYvwyWrYkn1CLCemhQUFIRz587hp59+wqRJk+SOY1XUajV+++03fRN1+vRpk++zdevW6NChAxQKBY4dO9agSerduzciIyMRERGBUaNGwd/f/56vJYTAlStX9A1UVlYWsrOzcfbsWWi12kZzKJVK+Pj4wNvbu8G/oaGhiI6ORuvWrY1yzLdTqVRIS0tDVlYWXF1d4ebm1mBzd3dv9HFjnZ4z+Oo5f39/ZGdnNyhSWVlZ8PHxMUooW2PJa6EMGTIEXl5eKCoqwsGDBzF48GC5IxFJxnpkON2l+c7OzhgzZozccayOUqlEVFQUoqKi8OGHH+LixYvYsWMHampq7vs/8dsfc3BwQH5+Pq5du4arV6/q/73z44qKChQXF6O4uFifoWfPnvomKSIiwqD5qAqFAh07dkTHjh3x4IMP6h+vqqrCyZMncezYMdTW1sLb27teU+Tt7S3brb+8vLwwefJkTJ48WZb9387gpmnmzJl47rnn0LJlS4wcORLAH0Phzz//PGbMmGH0gNZOo9EgKSkJgGU2TU5OToiOjsaGDRuQlJTEpomsCuuR4XRv4kaMGGHRo2HWokuXLpg7d26TntumTRu0adMGDzzwwF2/LoRAaWmpvomqrKxEeHi4/gIeY3Jzc7vnsg30PwY3TW+99RYuXbqEMWPG6FeR1mq1mDVrFt59912jB7R2Bw4cQFFREby8vDBkyBC549zVuHHjsGHDBiQmJmLJkiVyxyGSjPXIcJY88k31KRQKeHl5wcvLC3369JE7DqEZSw7k5OQgMzMTbm5uCA4ORqdOnYyd7b6sYf7AwoUL8fbbb2PatGlYu3at3HHu6tq1a/rz5Tdv3oSfn5/ckYgMYgn1CLD8mlRRUQFvb2/U1NTg5MmT6N27t9yRiKxKk1cE190UkRpnDe/q2rdvj+DgYBw7dgypqal45JFH5I5EZBDWI2l0c286d+6MXr16yR2HyOoYPJ18ypQpeP/99xs8vmzZsgZrpdi7Gzdu4MiRIwD+uEGuJdPl093qhcgasB4Z5vb7X3JtJiLDGdw0ZWRk3HXUJDY2FhkZGUYJZSt0DcigQYMavQTUEuiapuTk5PtedkpkKViPpBNCWMXIN5ElM7hpKi8vv+vy687OzigtLTVKKFthTQVq6NChaNGiBfLz8/WjY0SWjvVIuhMnTuDKlStwdXVFRESE3HGIrJLBTVNwcPBdJzT/+OOPnN1/m9raWqSkpACwjqbJxcUFUVFRAHiKjqwH65F0ujdxkZGRsq23Q2TtDJ4IvnDhQkyePBnnz5/H6NGjAQBpaWlYs2YN1q9fb/SA1mrPnj0oKyuDn58fBg4cKHccSWJjY7F582YkJiZi4cKFcschui/WI+msaeSbyFIZ3DTFxcVh8+bNePfdd7Fhwwa4ubmhf//+2L59O0aNGmWKjFZJV6DGjRtnsXfDvtO4ceMAAPv370dRURG8vb1lTkTUONYjaVQqFXbv3g2ATRNRczRpyYEJEyZgwoQJDR4/fvw4+vXr1+xQtuD2q1SsRceOHdGnTx+cPHkSqampmD59utyRiO6L9ej+UlJSoNFo0KtXL3Tt2lXuOERWq9lDIGVlZfjyyy8RFhaGkJAQY2SyepcuXcLJkyfh4OCAsWPHyh3HIFx6gKwZ69Hd8dQckXE0uWnKyMjArFmz0K5dO3zwwQcYPXo09u3bZ8xsVkvXcAwdOtQkd3w2Jd0puqSkJC49QFaD9ejetFqtviaxaSJqHoNOz+Xl5eHbb7/FypUrUVpaimnTpkGtVmPz5s28UuU21vyubsSIEXB3d8fNmzeRlZWFP/3pT3JHIror1iNpjh49ips3b6JFixYYPny43HGIrJrkkaa4uDj07NkT2dnZSEhIwPXr17F8+XJTZrNK1dXVSEtLA2CdTZNSqdRfhZSUlCRzGqK7Yz2STvcmLioqCkqlUuY0RNZNctOUmJiIuXPnYunSpZgwYQIcHR2NFmLFihXo3LkzXF1dER4ejgMHDhjttc1t165dqKqqQvv27dG/f3+54zQJ5zWRpWM9ks6aR76JLI3kpmn37t0oKytDaGgowsPD8emnn6KgoKDZAdauXYsFCxZg8eLFOHLkCEJCQhATE4Nbt241+7XloLtqbvz48VZ7byfdvKa9e/eipKRE3jBEd8F6JE1+fj72798PgE0TkVEIA5WXl4uVK1eKYcOGCWdnZ+Hg4CASEhJEaWmpoS8lhBAiLCxMPPvss/rPNRqNCAgIEPHx8fd9rkqlEgCESqVq0r6NTavViq5duwoAYtOmTXLHaZYePXoIAGLDhg1yRyG6J0uqR0JYXk36/vvvBQAREhIidxQim6AQQoimNlxnzpzBypUr8f3336OkpATR0dHYsmWL5OfX1NTA3d0dGzZswMSJE/WPz549GyUlJfj5558bfX5paSm8vLygUqng6el5z+8TQiA+Pl5yrqaqqKjAu+++C2dnZxQWFqJly5Ym36epvPDCC/jkk08wfPhw/ek6Iil69eqFyZMnm32/ctcjQHpNysjI0C82aUpbtmzB/v378frrr+Pdd981+f6IbJ4xOq+6ujqxadMmERcXZ9Dzrl27JgCIvXv31nv8lVdeEWFhYQ2+v7q6WqhUKv125coVSe/qNBqNAGC2bcyYMQb9HCxRcnKyWX9m3Gxnmzp1qqx/u+aqR0I0vSYtXLjQrL+T3377zaCfBRHdnVHu7+Ho6IiJEyca9K6uKeLj4+Hl5aXfAgMDJT3PwcEB1dXVWLx4MaqrqyGEMOm2fft2k/4cmkKtVmPJkiVQq9WSvn/s2LEm/zmZczPn798SN3Me/7p160z819w4c9UjoOk16c033zTr78QSlxowtCbZGh6/dR5/s07PNZehw+FqtbreD1gIgZqaGvj6+t530rXUYXNbxePn8dvz8UvRlNNzrElNx+Pn8Vvj8ct6J1kXFxeEhobq1zUC/li9Ni0tDUOGDGnw/UqlEp6envrNy8sLfn5+VnuVGhFZDkPrEcCaRGRvmnTDXmNasGABZs+ejYEDByIsLAwJCQmoqKjA448/Lnc0IrIzrEdE1BjZm6bp06cjPz8fixYtQl5eHgYMGICkpCS0adNG7mhEZGdYj4ioMbI3TQAwf/58zJ8/36T7UCqVWLx4sd3eRoDHz+O35+M3hDnqEcDfCY+fx2+Nxy/rRHAiIiIiayHrRHAiIiIia8GmiYiIiEgCNk1EREREErBpIiIiIpKATRMRERGRBGyaiIiIiCRg00REREQkAZsmIiIiIgnYNBERERFJwKaJiIiISAI2TUREREQSsGkiIiIikoBNExEREZEEbJqIiIiIJGDTRERERCQBmyYiIiIiCdg0EREREUkga9OUkZGBuLg4BAQEQKFQYPPmzXLGISI7x5pERI2RtWmqqKhASEgIVqxYIWcMIiIArElE1DgnOXceGxuL2NhYOSMQEemxJhFRYziniYiIiEgCWUeaDKVWq6FWq/WfCyFQU1MDX19fKBQKGZMRkT1iTSKyL1Y10hQfHw8vLy/91qpVK/j7+6OsrEzuaE32yCOPQKFQmGVzcHBAbm6u3IdMZDNsrSaVl5ejY8eOZqtJU6ZMkfuQiQyiEEIIuUMAgEKhwKZNmzBx4sR7fs+d7+pKS0sRGBgIlUoFT09PM6Q0rrq6Ovj7+6O4uBhPPPEEfHx8TLavDRs24Ny5c/jiiy8wb948k+2HyFbYY03avHkzJk2aBAcHB3h6esLd3R1ubm71tjsfc3d3h6urKxwdHSXvp6amBh999BEUCgVycnLQrVs3Ex4VkfFIPj3n4OAAhUIBIQQUCgU0Go0pc92VUqmEUqk0+35N5cCBAyguLkbr1q3x2WefwcnJdGdLPTw8sHDhQiQmJrJpIqtnCfUIsL2atG3bNgDA/Pnz8cknn5h0X6dOnUJiYiISEhKwfPlyk+6LyFgkn567ePEiLly4oP/XGMrLy5GZmYnMzEz9PjIzM+3mFFJSUhIAIDo62qQNEwCMGzcOAJCWloaamhqT7ovI1ExRjwD7rklCCCQmJgKAWa4gfOmllwAA33zzDYqKiky+PyKjEDJKT08XABpss2fPlvR8lUolAAiVSmXaoCYycOBAAUCsWrXK5PvSaDTC399fABDp6ekm3x+RNbLnmpSdnS0ACDc3N1FZWWny/Wm1WtG/f38BQMTHx5t8f0TGYNBEcCEELl68iLq6OgB/nJdeu3YtVq9ejYKCAoMbtoiICAghGmzffvutwa9lbW7duoVDhw4BAGJiYky+PwcHB/1+dO8miayZsesRYN81SVcXIiMj4ebmZvL9KRQK/WjT8uXLOQJOVkFy03TmzBl06dIF3bt3R+/evXHx4kUMHToUc+fOxdNPP43evXsjJyfHlFltSkpKCgBgwIABaNeunVn2qTtFpzstSGStWI+Mz5yn5nRmzJiBgIAAXL9+HT/++KPZ9kvUVJKbpldffRUhISHIzMzEgw8+iAkTJqBDhw4oLi5GUVERhgwZgjfffNOUWW2KHAVq7NixUCgUyM7OxrVr18y2XyJjYz0yrtLSUuzevRsAMH78eLPt18XFBX/7298AAB9++CGEZVzMTXRvUs/j+fn5iaNHjwohhCgvLxcKhUL89ttv+q/v2bNHdOzY0RinDCWz1vkDdXV1wsfHRwAQGRkZZt13eHi4ACC+/vprs+6XyJgssR4JYb01aePGjQKA6NGjh9n3XVRUJDw8PAQAkZqaavb9ExlC8khTeXk5vL29Afxx+bqHh0e900qBgYG4efOmMfs5m3X48GEUFhbC09MTgwcPNuu+eYqObAHrkXHplhow5yiTTuvWrTFnzhwAf4w2EVkyyU1TQEBAvctuly1bBn9/f/3n+fn5aN26tXHT2Sjdqbno6Gg4Ozubdd+604Gpqan6CbRE1ob1yHiEEPo3UXLdrPj555+HQqFAUlISTpw4IUsGIikkN01RUVE4ffq0/vOnn34aLVu21H+ekpKCBx54wLjpbJQc85l0Bg4cCB8fH6hUKvz+++9m3z+RMbAeGc+xY8dw7do1uLu7Y+TIkbJk6NatGyZNmgQA+Pjjj2XJQCSF0W6jcvHiRbi6uprtSjDgj8mLXl5eVnXLgsLCQvj5+UEIgStXrqBDhw5mz/DII49gzZo1+Pvf/4533nnH7PsnMjU56hFgnTXpvffew+uvv44HH3wQW7dulS3H3r17MWzYMLi4uCA3Nxdt2rSRLQvRvRjthr1dunQxe4GyRikpKRBCIDg4WJaGCfjfCBfXayJbxXoknZwj37cbOnQoBg8ejJqaGqxYsULWLET3IvneHatXr673+axZs4wexh5YQoEaO3YsAODo0aPIy8tD27ZtZctC1BSsR8ZRUlKCPXv2AJC/aQL+uLXK1KlT8dlnn+G1116Du7u73JGI6pHcNK1atUr/sUKhYJFqAq1Wi+TkZAD/u4pNDm3atEFoaCgOHz6M5ORkzJ49W7YsRE3BemQc27dvh0ajQa9evdClSxe542DSpEno0qULLl68iNWrV+Opp56SOxJRPZKbpvT0dFPmsAtHjx7FrVu30KJFCwwbNkzWLLGxsTh8+DASExPZNJHVYT0yDksY+b6do6Mjnn/+ebzwwgv4+OOPMW/ePDg4GG0WCVGz8a/RjHQFKioqCi4uLrJm0Y10paSkcOkBIjskhNDXJDnWZ7qXOXPmwMvLC2fPnsWvv/4qdxyietg0mZFuLRQ5T83phIeHo1WrViguLsbBgwfljkNEZpaVlYUbN27Aw8MDI0aMkDuOXsuWLfHkk08C4GKXtkqr1eLs2bMoKyuTO4rB2DSZSXFxsX5dJEsYCndyctJPCOdVdET2R7cK+OjRo6FUKmVOU9/f/vY3ODk5YdeuXTh8+LDccciIzpw5g1GjRqFnz57w8vJCv3798Ne//hVfffUVsrOzodFo5I7YKDZNZpKamgqtVos+ffqgY8eOcscB8L8RLzZNRPbHEk/N6XTo0AEzZswAwNEmW1FbW4v4+HiEhIRg9+7dcHR0hBACJ06cwMqVKzFv3jyEhITAy8sLkZGReO2117Bp0yZcv35d7uj1GG1xSzlY00Jyc+bMwapVq7BgwQKLKQI3btxAQEAAAODmzZv1bkNBRIazlppUXFwMPz8/aDQaXLp0CZ06dZI7UgOZmZn405/+BEdHR1y4cMFi3myS4Y4cOYK5c+ciMzMTABATE4MvvvgCSqUS+/fvx/79+7Fv3z4cPHgQ5eXlDZ7foUMHDB48GP369UNdXR2qqqr0W2VlZb3P7/bYkSNH0K1bN6Mci8FN06pVq9CiRQtMnTq13uPr169HZWWlWa/EspYCJYRA+/btcePGDaSmpiIqKkruSHoDBgxAVlYWvv/+ezz66KNyxyEyiCXVI8B6atK6deswffp09OnTx6Lv9TZmzBjs2LEDL7/8Mv75z3/KHeeuqqqq8MUXXyA/Px9ubm5wc3ODu7u7/uN7PdaiRQv4+PhAoVDIfQgmU1VVhaVLl+KDDz6ARqOBt7c3EhIS8Oijj971uDUaDU6dOqVvovbv348TJ05Aq9U2K0d2djaCg4Ob9Ro6kpcc0ImPj8cXX3zR4HF/f3/MmzePl6/fhW7Cpbu7u0VNuAT+mF+VlZWFxMRENk1kdViPmsbSlhq4lwULFmDHjh348ssvsXDhQotrRIuKihAXF4e9e/c26fkeHh7o3r07unfvjqCgoHpbmzZtrLqhysjIwF//+lfk5OQAAKZNm4Z//etfjd4ex9HREf369UO/fv0wd+5cAEBZWRkOHz6Mffv24fz583B1dW3QkN6rUdU9bsxRSoObptzc3LsugtapU6d6dx2n/9FdNWeJEy5jY2Px3nvvITk5GRqNBo6OjnJHIpKM9chwWq1WX5MsvWmKjY1Fr169cPr0aaxcuRIvvvii3JH0cnNzMW7cOJw6dQqtWrXCo48+iurq6vueKrp9q6ioQFZWFrKyshq8fosWLRo0U927d0eHDh0QEBAg+7I191JaWopXX30Vn3/+OQAgICAAn332GR566KEmvV7Lli0RERGBiIgII6ZsOoObJn9/f2RnZ6Nz5871Hs/KyoKPj4+xctkUS35XN2TIEHh6eqKwsBCHDx9GWFiY3JGIJGM9MlxmZiby8vLQokULDB8+XO44jXJwcMCCBQswb948fPLJJ/qr6uR2/PhxjBs3DteuXUP79u2RlJSEfv36GfQaNTU1uHTpEnJycupt586dw+XLl1FeXo7MzEz9PKA7+fv7o0OHDujQoQPat2/f4OP27dujRYsWRjha6X755Rc8/fTTuHr1KgDgiSeewLJly9CqVSuz5jApYaD/+7//E506dRI7duwQdXV1oq6uTqSlpYlOnTqJl156ydCXaxaVSiUACJVKZdb9GqKkpEQ4OjoKAOL8+fNyx7mryZMnCwBiyZIlckchMogl1SMhrKMmvf322wKAeOihh+SOIklVVZXw8/MTAMSPP/4odxyxa9cu4eXlJQCIPn36iNzcXKPvo7q6Wpw6dUps2bJFfPjhh+Lpp58WUVFRokuXLsLFxUUAkLR5eXmJP/3pT+LJJ58U33zzjTh58qTQaDRGz3vr1i0xc+ZM/X67desmduzYYfT9WAKDmya1Wi2mTZsmFAqFcHZ2Fs7OzsLR0VE8/vjjQq1WmyLjPVlDgdq4caMAIHr06CF3lHv66quvBAAxePBguaMQGcSS6pEQ1lGThg4dKgCIL774Qu4oki1ZskQAEIMGDRJarVa2HBs3bhRKpVIAEMOHDxeFhYVmz6DVasWtW7fE0aNHxdatW8Xnn38u/vGPf4jHHntMREdHi969e4uWLVs22khFRUWJN954Q2zdulXcunVL8r6Li4vFgQMHxA8//CCWLl0qHn30UREeHi5atGghAAgHBwfx8ssvi4qKChP+BOTV5CUHcnJykJmZCTc3NwQHB8tyyao1XKnyxBNP4Ouvv8bzzz+PhIQEuePc1dWrVxEYGAiFQoH8/Hye1iCrYwn1CLD8mlRUVAQ/Pz9otVrk5uYiMDBQ7kiS5OfnIzAwEGq1Go899hhefPFF9O/f36wZ/v3vf+PZZ5+FEAIPPfQQ1qxZAzc3N7NmMERpaSmuXr2KkydP6i/rP3ToEKqqqhp8b5cuXRAeHo7w8HAMHjwYzs7O+lOFt586LCgouOf+goODsXLlSgwaNMiUhyU7rtNkQkIIBAYG4tq1a0hMTLSI26fcS3BwMI4fP44ffvgBM2fOlDsOkVWy9Jq0du1azJgxA3379sXx48fljmOQhQsX4u2339Z/HhERgeeeew5//vOfTXoBixACixYt0u973rx5WLFihUXMrTJUbW0tjh8/Xm9tpNOnTxv0Gm3btr3rBPXg4GD7uJDI0KGpyZMni/fee6/B4++//754+OGHmzfuZSBLHwo/duyYACBcXV1FZWWl3HEa9fLLLwsAYtasWXJHIZLMkuqREJZfk2bNmiUAiFdeeUXuKAbTarVi9+7dYtq0afp5ogBE586dxT//+U9RVFRk9H3W1taKOXPm6Pe1dOlSWU8PmkJxcbFISUkRb731lnjwwQeFv7+/8Pf3F8OGDROPPfaYePvtt8XatWvFkSNHRGlpqdxxZWdw0+Tr6yuys7MbPJ6dnS38/f2NEkoqSy9Qy5YtEwBEbGys3FHuKy0tTQAQ/v7+JpkoSGQKllSPhLDsmqTRaIS/v78AYPWTdHNzc8Xrr78ufHx89A2Nu7u7eOqpp8TJkyeNso+Kigrx4IMP6ufqfPnll0Z5XbJuBt97rry8/K7rQzg7O6O0tLQpg102S7fUgCWfltMZPnw4PDw8cOvWLRw9elTuOESSsB5Jd+TIEdy6dQstW7bEsGHD5I7TLIGBgXj33Xdx5coVfP311wgODkZlZSU+//xz9OnTB2PHjsUvv/zS5JWkCwsLMWbMGPzyyy9wdXXFpk2b8MQTTxj5KMgaGXxSNjg4GGvXrsWiRYvqPf7jjz+iT58+Rgtm7crKyrB7924Alrk+051cXFwwZswYbNmyBUlJSQgNDZU7EtF9sR5Jp3sTFxUVZbELIxrKzc0Nc+fOxZw5c7Br1y7861//ws8//4zU1FSkpqaiW7dumDFjBlq1anXPlaPv/FylUuGhhx7CmTNn0Lp1a2zdutXqm0wyHoObpoULF2Ly5Mk4f/48Ro8eDQBIS0vDmjVrsH79eqMHtFY7duxAbW0tunXrhqCgILnjSBIbG4stW7YgMTERb7zxhtxxiO6L9Ug6S15kt7kUCoV+1ehLly5hxYoV+Prrr3H+/Hm88847TXrNwMBAJCUlsfmmepp09dyvv/6Kd999V3+Jb//+/bF48WKMGjXKFBnvyZKvVHn66afx+eef49lnn8Wnn34qdxxJLl26hC5dusDBwQEFBQVo3bq13JGI7stS6hFguTWpsLAQfn5+EELgypUr6NChg9yRTK6iogL/+c9/cPjw4bvewuRetzcRQiAsLAwbN260i58TGcaoSw4cP37c4KXkm8NSC5QQAl26dMHly5fxyy+/YMKECXJHkqx37944ffo01q1b1+DO8UTWxNz1CLDcmrRmzRo88sgjCA4ORnZ2ttxxLJYQAjU1NRZ3j1CyHAZPBL9TWVkZvvzyS4SFhSEkJMQYmaze6dOncfnyZSiVSou5yaBUuqF73VA+kTVhPbq7bdu2AQDGjx8vcxLLplAo2DBRo5rcNGVkZGDWrFlo164dPvjgA4wePRr79u0zZjarpbuD+MiRI+Hh4SFzGsPomqakpCQYcRCSyKRYj+5Nq9UiOTkZgG3OZyIyJ4Mmgufl5eHbb7/FypUrUVpaimnTpkGtVmPz5s2cLHcba55wOWLECLi7u+PGjRvIzs7mu3WyWKxH0hw+fBj5+fnw9PTE0KFD5Y5DZNUkjzTFxcWhZ8+eyM7ORkJCAq5fv47ly5ebMptVqqiowK5duwBYZ9Pk6uqKyMhIADxFR5aL9Ug63am56OhoODs7y5yGyLpJbpoSExMxd+5cLF26FBMmTDDqPWZWrFiBzp07w9XVFeHh4Thw4IDRXtvcdu7ciZqaGnTq1Ak9e/aUO06T6Bbj1J1mJLI0rEfSWfPIN5Glkdw07d69G2VlZQgNDUV4eDg+/fTTRu94LNXatWuxYMECLF68GEeOHEFISAhiYmJw69atZr+2HG4vUAqFQuY0TaMrrnv27OGqymSRWI+kyc/P1zd91nBnAiKLZ+h9V8rLy8XKlSvFsGHDhLOzs3BwcBAJCQlNvpFfWFiYePbZZ/WfazQaERAQIOLj4+/7XEu7z5NWqxVdu3YVAMTPP/8sd5xmCQoKEgDExo0b5Y5CdE+WVI+EsLya9J///EcAECEhIXJHIbIJzVqn6cyZM1i5ciW+//57lJSUIDo6Glu2bJH8/JqaGri7u2PDhg2YOHGi/vHZs2ejpKQEP//8c6PPl7omihACH374oeRcTVVeXo6lS5fC2dkZhYWFaNmypcn3aSrPPfccli9fjlGjRuHBBx+UOw5ZkR49euDPf/6z2fcrdz0CpNekPXv24Pfff5ecrak2bdqEvXv34rXXXkN8fLzJ90dk84zRedXV1YlNmzaJuLg4g5537do1AUDs3bu33uOvvPKKCAsLa/D91dXVQqVS6bcrV65Ielen0Wj0d8I2xzZ69GiDfg6WKDEx0aw/M262s02dOlXWv11z1SMhml6TFi5caNbfSUZGhkE/CyK6u2YvbgkAjo6OmDhxokHv6poiPj4eXl5e+i0wMFDS8xwcHFBdXY3FixejuroaQgiTbmlpaSb9OTSFWq3GkiVLoFarJX3/uHHjTP5zMudmzt+/JW7mPP5169aZ+K+5ceaqR0DTa9Kbb75p1t/JiBEjTPyTMJyhNcnW8Pit8/iNehsVQxk6HK5Wq+v9gIX4Y8l7X1/f+066ttTbG5gLj5/Hb8/HL0VTTs+xJjUdj5/Hb43Hb5SRpqZycXFBaGhovZEZrVaLtLQ0DBkypMH3K5VKeHp66jcvLy/4+flZ7VVqRGQ5DK1HAGsSkb0xaEVwU1iwYAFmz56NgQMHIiwsDAkJCaioqMDjjz8udzQisjOsR0TUGNmbpunTpyM/Px+LFi1CXl4eBgwYgKSkJLRp00buaERkZ1iPiKgxsjdNADB//nzMnz/fpPtQKpVYvHix3d7BmsfP47fn4zeEOeoRwN8Jj5/Hb43HL+tEcCIiIiJrIetEcCIiIiJrwaaJiIiISAI2TUREREQSsGkiIiIikoBNExEREZEEbJqIiIiIJGDTRERERCQBmyYiIiIiCdg0EREREUnApomIiIhIAjZNRERERBKwaSIiIiKSgE0TERERkQRsmoiIiIgkYNNEREREJAGbJiIiIiIJ2DQRERERSSBr05SRkYG4uDgEBARAoVBg8+bNcsYhIjvHmkREjZG1aaqoqEBISAhWrFghZwwiIgCsSUTUOCc5dx4bG4vY2Fg5IxAR6bEmEVFjOKeJiIiISAJZR5oMpVaroVar9Z8LIVBTUwNfX18oFAoZkxGRPWJNIrIvVtU0xcfHY+nSpQ0eV6lU8PT0lCGR7Vq1ahXmzJlT7zF3d3e4ubnpt7t97urqCgcH6QOYubm52LlzJ4YPH47ffvvN2IdBZFKsSeZRUVEBb29v1NTUYPr06VAqlSbb14ULF7B79264ubkhJSUFw4cPN9m+yPoohBBC7hAAoFAosGnTJkycOPGe33Pnu7rS0lIEBgayQJnA9OnTsW7dOrz++utYtGgRlEqlSd45X7p0CV26dIGjoyMKCwvh5eVl9H0QNQVrkuXYtm0bJkyYgI4dO+LSpUsmHcWrra3FpEmT8Ouvv8LLywu7du1CSEiIyfZH1kXykICDgwMcHR31/8pBqVTC09Oz3kbGV1dXh9TUVADAn//8Z7i6upqsSHXu3Bk9evSARqPBjh07TLIPsj2WUI8A1iRzSU5OBgDExMSY/LSns7Mz1q1bh+HDh0OlUiEmJgbnzp0z6T7Jekg+PXfx4kWj77y8vLzeH+PFixeRmZkJb29vdOzY0ej7I2kOHjyI4uJitG7dGoMGDTL5/mJiYnD27FkkJydj0qRJJt8fWT9T1COANclS6ZqmcePGmWV/7u7u2Lp1KyIiIpCVlYXo6Gjs3r0b7du3N8v+yYIJGaWnpwsADbbZs2dLer5KpRIAhEqlMm1QO7No0SIBQEyfPt0s+/v1118FANG5c2eh1WrNsk+iu2FNsjyXLl0SAISjo6MoKSkx677z8vJE9+7dBQDRt29fUVhYaNb9k+Vp9pIDo0ePxuXLl5v03IiICAghGmzffvttc2NRMyQlJQEw37u6UaNGwcXFBZcuXUJOTo5Z9km2qTn1CGBNskS6UabBgwebfc5jmzZtkJqaioCAAJw4cQLjx49HeXm5WTOQZZF8em7Lli13fTwjIwO//PILAgMDAfwxB4asV0FBAQ4ePAgAGDt2rFn26eHhgREjRiAtLQ1JSUno0aOHWfZL1ov1yH7o3sTFxMTIsv/OnTsjNTUVI0aMwP79+zFp0iT88ssvJr2CjyyX5KvnHBwcoFAo0Ni3KxQKaDQao4W7n9LSUnh5efFKFSNas2YNHnnkEfTv3x9ZWVlm2+8///lP/N///R/Gjx+PX3/91Wz7JetkifUIYE0yttraWvj6+qK0tBT79+9HWFiYbFkOHDiA0aNHo6KiAg8//DB+/PFHWS9CIHlIPj0XExOD2NhY5OXlQavV6jdHR0ccP34cWq3W7AWKjM/cp+Z0dO8id+7cWe8SbqK7YT2yD/v370dpaSl8fHwQGhoqa5awsDBs3rwZLi4u2LBhA5566qlGm3ayTZKbpsTERIwZMwYDBw7EL7/8YspMJBOtVmv2q1R0goOD0a5dO1RWVmL37t1m3TdZH9Yj+6CrR9HR0RYxqhMVFYU1a9bAwcEBX3/9NV577TW5I5GZGTQR/MUXX8SWLVvw6quv4sknn0RlZaWpcpEMsrKycPPmTXh4eGDYsGFm3bdCodCPNukKJVFjWI9s3+3rM1mKyZMn48svvwQALFu2DMuWLZM5EZmTwVfPDRgwAIcOHYJCocCAAQM4PGlDdKfmxowZAxcXF7PvX1cYdTmI7of1yHYVFBTg0KFDAMx3UYpUc+fO1TdLr776Kr766iuZE5G5NOnec25ubvj888+xZcsWpKenw9fX19i5SAZyzWfSiY6OhkKhwLFjx3D9+nUEBATIkoOsC+uRbUpNTYUQAsHBwRZZC1555RUUFhbi/fffx5NPPolTp04hLCwM/fv3R48ePeDkZFW3diWJLObec03BK1WMR6VSwdfXF3V1dTh//jy6du0qS46wsDAcPHgQq1atwmOPPSZLBqKmYk0ynsceewzfffcdXnnlFYs9BSaEwJNPPtlgpEmpVKJPnz7o379/vc3f31+mpGQsklvh1atX1/t81qxZRg9D8tmxYwfq6urQo0cP2Rom4I9RroMHDyI5OZlNE90T65FtE0IgJSUFgGXNZ7qTQqHAv//9b4wYMQJ79uzBsWPHkJ2djfLychw9ehRHjx6t9/1t2rSp10RFRkbq1xQj6yB5pCkyMvJ/T1IoLOLmqnxXZzxPPfUUvvjiCzz33HP45JNPZMuxZ88eDB8+HD4+Prh586ZFXDFDlscS6xHAmmQs2dnZCAkJgbu7O4qKiqxqIUmtVovLly8jOzu73paTk3PXOXfBwcGIjY3F+PHjMXToUDg7O8uQmqTi6TmCEAJdunTB5cuXsW3bNsTGxsqWpa6uDr6+vlCpVLIvZkdkKNYk41i2bBleffVVm1rstqKiAidPntQ3UQcOHMCBAweg1Wr13+Pp6Yno6GiMHz8e48aNs8i5XPaOM9UIZ86cweXLl6FUKjFq1ChZszg5OWHMmDH46aefkJyczKaJyA5Z4lIDzeXh4YFBgwZh0KBB+scKCwuRkpKCxMREJCYmoqCgABs3bsTGjRsB/HF16Pjx4zF+/HiEh4dzcrkFaPYNe8n66a6aGzlyJNzd3WVOA67XRGTHKioq9AvcynUlr7n4+Phg5syZWL16NW7evIkDBw5gyZIlCAsLg0KhQGZmJt59910MHz4c/v7+ePTRR3Hp0iW5Y9s1Nk0k+1IDd9I1Tfv27YNKpZI5DRGZ086dO1FTU4POnTsjKChI7jhm4+DggEGDBmHx4sXYv38/bt68ie+//x4zZ86Et7c3iouL8d///hchISH48ccf5Y5rt9g02bmqqirs2rULgOU0TZ06dUKvXr2g0WiQlpYmdxwiMqPbT80pFAqZ08jHz88Pjz76KH744QfcunULu3fvxpAhQ1BaWoqZM2fi8ccfR1lZmdwx7Q5PkNq5Xbt2obq6GoGBgejdu7fccfRiYmJw+vRpJCUlYfLkyXLHISIz0Y1829J8puZydHTEsGHDkJGRgTfffBPvvPMOvv32W+zevRs//PBDvXlS1qCgoAAbNmxAVVWVQc/TaDSoqqqqt1VWVt73sf379xttKR2Dm6ZVq1ahRYsWmDp1ar3H169fj8rKSsyePdsowcg8bj81Z0nv6mJiYvDJJ58gOTkZQgiLykaWg/XItly8eBE5OTlwcnLC6NGj5Y5jcZycnPDmm28iKioKjz76KM6dO4ehQ4fi7bffxiuvvAIHB8s+eaTVarFq1Sr83//9H4qKisy234qKCqO9lsFNU3x8PL744osGj/v7+2PevHksUlbG0uYz6YwaNQpKpRK5ubk4c+YMevXqJXckskCsR7ZFd2puyJAh8PLykjmN5Ro5ciSysrIwb948bNiwAa+99hpSUlKwevVqtG/fXu54d5WdnY2nn34ae/fuBQD07dsXAwYMMOg1HBwc4Obm1mBzd3dv9PFu3boZ70CEgZRKpbh48WKDxy9evChcXV0NfblmUalUAoBQqVRm3a+tuHDhggAgHB0dRUlJidxxGoiKihIAREJCgtxRyEJZUj0SgjWpuSZOnCgAiLffflvuKFZBq9WKlStXCnd3dwFAeHt7i02bNskdq57S0lLx4osvCkdHRwFAtGjRQnz00UeitrZW7mhNYvBYnr+/P7Kzsxs8npWVBR8fn+Z1cGRWund1Q4cOtch3dbrRLy49QPfCemQ7amtr9Rd+cD6TNAqFAnPmzMGRI0fwwAMPoKioCJMmTcLTTz+NyspKWbMJIbB+/Xr06tULH3/8MTQaDaZOnYpTp07hxRdftNo1pwxummbOnInnnnsO6enp0Gg00Gg02LFjB55//nnMmDHDFBnJRCz11JyOrnDu3LkT1dXVMqchS8R6ZDv27duHsrIy+Pr64oEHHpA7jlXp2bMnfv/9d7zyyisAgM8//xwDBw5EVlaWLHnOnTuH2NhYTJs2DdevX0e3bt2QmJiIdevWoUOHDrJkMhpDh6bUarWYNm2aUCgUwtnZWTg7OwtHR0fx+OOPC7VabYLBsHvjUHjTqdVq0aJFCwFAHD58WO44d6XVakX79u0FAJGSkiJ3HLJAllSPhGBNao6///3vAoB45JFH5I5i1VJSUkTbtm0FAOHi4iKWLl0qdu/ebZa/yaqqKrFkyRKhVCr1+1+8eLGorKw0+b7Npcn3nsvJyUFmZibc3NwQHByMTp06Ga2Rk4r3eWq6nTt3IjIyEv7+/rhx44bFXnUxZ84crFq1Ci+99BI++OADueOQhbKEegSwJjXHwIEDcfjwYXz33XeYNWuW3HGsWn5+PubMmYNffvml3uOdO3dG//79623du3c3yo3RU1JS8Oyzz+LcuXMAgLFjx+LTTz+1uQVKecNeO/Xaa6/h/fffx6OPPorvv/9e7jj3tHbtWsyYMQP9+vXDsWPH5I5D1CjWpKbJz89HmzZtIITAjRs30LZtW7kjWT0hBL755hv89NNPyM7OxtWrV+/6fW5ubujbty9CQkL0jVTr1q0brH3U2JpIFy5cQGJiIgAgICAACQkJePjhh21yqRiDZ2JNmTIFYWFhePXVV+s9vmzZMhw8eBDr1683WjgyHd3kakudz6QTFRUFhUKB48eP49q1axZ7OS3Jg/XINqSmpkIIgZCQEDZMRqJQKDB37lzMnTsXAFBUVIRjx44hOztbvx07dgxVVVU4dOgQDh061Kz9OTo64rnnnsOSJUts+g2DwU1TRkYGlixZ0uDx2NhYfPjhh8bIRCZ248YNZGZmQqFQYOzYsXLHaZSPjw/CwsKwf/9+pKSk4PHHH5c7ElkQ1iPbcPutU8g0vL29MWrUKIwaNUr/mEajwYULF/RNVFZWFrKzs1FZWXnP9Y/u9piHhwcmTJiA4OBgGY/QPAxumsrLy+Hi4tLgcWdnZ5SWlholFJlWSkoKACA0NBR+fn4yp7m/mJgY7N+/H0lJSWyaqB7WI+un1WqtZuTb1jg6OiIoKAhBQUGYMmWK3HGsgsGzf4ODg7F27doGj//444/o06ePUUKRaVn6UgN30r37TE1NhUajkTkNWRLWI+uXnZ2NmzdvwsPDA8OGDZM7DlGjDB5pWrhwISZPnozz58/r7w2UlpaGNWvWcP6AFdBoNPqRJmtpmsLCwuDl5YXi4mIcOnQI4eHhckciC8F6ZP10o0yRkZF3HTUksiQGjzTFxcVh8+bNOHfuHJ555hm89NJLuHr1KrZv346JEyeaICIZ06FDh1BUVAQvLy+raT6cnJwQFRUFgKuDU32sR9aP85nImjRpcZ4JEyZgz549qKioQEFBAXbs2IFRo0bh+PHjxs5HRqY7NRcdHW1Vy9jzlip0L6xH1qu8vBy7d+8GwKaJrEOzVzQsKyvDl19+ibCwMISEhBgjE5mQtc1n0tEV1H379qG4uFjmNGSpWI+sS3p6Ompra9G1a1d0795d7jhE99XkpikjIwOzZs1Cu3bt8MEHH2D06NHYt2+fMbORkRUWFuLAgQMArO9dXWBgIHr37g2tVqu/qSeRDuuRdbr91JwtLoRItseg8zN5eXn49ttvsXLlSpSWlmLatGlQq9XYvHkzr1SxAtu3b4dWq0W/fv2s8qaJMTExOHXqFJKTk/Hwww/LHYdkxnpk/TifiayN5JGmuLg49OzZE9nZ2UhISMD169exfPlyU2YjI7PWU3M6usKanJwMK777DxkB65H1u3DhAs6dOwcnJydERkbKHYdIEslNU2JiIubOnYulS5diwoQJRrnBn86KFSvQuXNnuLq6Ijw8XH8KiYxHCKFvmqz1Xd2oUaPg6uqKK1eu4PTp03LHIRmxHlk/3SjT0KFDbfq2G2RbJDdNu3fvRllZGUJDQxEeHo5PP/0UBQUFzQ6wdu1aLFiwAIsXL8aRI0cQEhKCmJgY3Lp1q9mvTf+TnZ2NvLw8uLu7Y/jw4XLHaRI3NzeMHDkSwP9Gzcg+sR5ZP2sf+SY7JQxUXl4uVq5cKYYNGyacnZ2Fg4ODSEhIEKWlpYa+lBBCiLCwMPHss8/qP9doNCIgIEDEx8ff97kqlUoAECqVqkn7tifvvfeeACAmTJggd5Rm+fDDDwUAERMTI3cUsgCWVI+EYE2SSq1WixYtWggA4vDhw3LHIZJMIUTTJ4ecOXMGK1euxPfff4+SkhJER0djy5Ytkp9fU1MDd3d3bNiwod5CdLNnz0ZJSQl+/vnnRp9fWloKLy8vqFSqRod3hRB2P9/h66+/xrFjx7B8+XLMnz9f7jhNduLECfTr1w+urq547733eMWNBerevTvGjx9v9v3KXY8A6TVp3759dn3a79q1a1i2bBn8/PyQl5cHB4dmr35DZB7G6Lzq6urEpk2bRFxcnEHPu3btmgAg9u7dW+/xV155RYSFhTX4/urqaqFSqfTblStXJL2r02g0AgA3QOTk5Bj0O7I0Wq1WdOjQQfafI7d7b1OnTpX1b8Rc9UiIptekhQsXyv57soTt//2//2fQ74hIbkZp7x0dHTFx4kSD3tU1RXx8PLy8vPRbYGCgpOc5ODiguroaixcvRnV1NYQQdrfpjl/qz8xSKRQKXLlypcnHb++/f3Mc/7p162T9GzFXPQKaXpPefPNN/k1WV6N79+5Qq9Um/i1ZJrVajSVLlvD4rez4m3V6rrkMHQ5Xq9X1fsBCCNTU1MDX1/e+p2mkDpvbKh4/j9+ej1+KppyeY01qOh4/j98aj1/WE8kuLi4IDQ2tt8KzbsXnIUOGNPh+pVIJT09P/ebl5QU/Pz/OayGiZjO0HgGsSUT2RvY7ti5YsACzZ8/GwIEDERYWhoSEBFRUVODxxx+XOxoR2RnWIyJqjOxN0/Tp05Gfn49FixYhLy8PAwYMQFJSEtq0aSN3NCKyM6xHRNQY2ZsmAJg/f77JL4NXKpVYvHgxlEqlSfdjqXj8PH57Pn5DmKMeAfyd8Ph5/NZ4/LJOBCciIiKyFlxRjIiIiEgCNk1EREREErBpIiIiIpKATRMRERGRBGyaiIiIiCRg00REREQkAZsmIiIiIgnYNBERERFJwKaJiIiISAI2TUREREQSsGkiIiIikoBNExEREZEEbJqIiIiIJGDTRERERCQBmyYiIiIiCdg0EREREUnApomIiIhIAlmbpoyMDMTFxSEgIAAKhQKbN2+WMw4R2TnWJCJqjKxNU0VFBUJCQrBixQo5YxARAWBNIqLGOcm589jYWMTGxsoZgYhIjzWJiBrDOU1EREREEsg60mQotVoNtVqt/1wIgZqaGvj6+kKhUMiYjIjsEWsSkX2xqpGm+Ph4eHl56bdWrVrB398fZWVlckezObdu3UK7du2gUCjMss2ePVvuQyYyGGuS+bz55ptmq0cKhQJ/+9vf5D5kskAKIYSQOwQAKBQKbNq0CRMnTrzn99z5rq60tBSBgYFQqVTw9PQ0Q0r78cUXX+Cpp54CALi4uMDNzU2/ubu71/v8zu32r9/5vXd+7fjx4/h//+//oU2bNrh+/TocHKyqjycbxppkOYQQCAgIQF5eHhwcHCTXn/s9frf6lJWVhUceeQQA8MMPP2DmzJkyHz1ZEsmn5xwcHKBQKCCEgEKhgEajMWWuu1IqlVAqlWbfrz3atm0bAODtt9/GG2+8YbL99OzZE/PmzcPNmzeRnZ2NAQMGmGxfZDssoR4BrEnmkpmZiby8PHh4eKCwsNCkP/M+ffrgxIkTeOedd/DXv/4V/fv3R9++fU22P7IukpumixcvGn3n5eXlOHfuXL19ZGZmwtvbGx07djT6/kgatVqNtLQ0AMD48eNNui+lUonRo0dj69atSEpKYtNEkpiiHgGsSZYqMTERADBmzBizNKlLly7Fvn37kJaWhilTpuDgwYNo2bKlyfdLVkDIKD09XQBosM2ePVvS81UqlQAgVCqVaYPamdTUVAFAtG3bVmi1WpPvb8WKFQKAGDVqlMn3RdQY1iTLNGzYMAFA/Pvf/zbbPm/duiXat28vAIipU6eapRaS5WvW1XMXL17EuXPn0K5dO/Tr18/g50dEREBYxpQquo3uXV1sbKxZrgAaN24cAGDPnj0oLS3lXBBqkubWI4A1yRIVFxfj999/BwCzrqHl5+eH9evXY+TIkVi/fj2GDRuG559/3mz7J8skedbtM888g/LycgBAVVUVHn74YXTv3h0xMTEICQnB6NGj9V8n63Z702QOXbt2RVBQEOrq6rBjxw6z7JOsG+uR/UhNTYVWq0WfPn3QqVMns+57yJAh+OijjwAAL7/8Mvbs2WPW/ZPlkdw0ffHFF6isrAQAvPXWW9i/fz+2b9+O8vJyZGRkIDc3F++8847JgpJ5XLp0CadOnYKjoyOio6PNtl/daFNSUpLZ9knWi/XIfuguSjH1/Mp7mT9/PmbMmIG6ujpMmzYNN2/elCUHWQbJTdPtQ9Zbt27FsmXLEBkZCXd3dwwbNgwfffQRfvrpJ5OEJPPRjTINHToUrVq1Mtt+b2+aeHqE7of1yD5otVr9Gym5bm+jUCjw1VdfoXfv3rh+/TpmzpyJuro6WbKQ/AxaFEc3vyUvLw/9+/ev97WQkBBcuXLFeMlIFrp3deYuUKNGjYJSqcTly5dx5swZs+6brBPrke07evQobt68iRYtWmD48OGy5WjRogU2btwIDw8PpKenY9GiRbJlIXkZ1DQtXLgQCxYsgIODA65fv17va4WFhfDw8DBqODKv6upq/Zwicw+Fe3h4YOTIkQB4io6kYT2yfbqR76ioKLi4uMiapXfv3li5ciWAP1aC37Jli6x5SB6Sm6aRI0fizJkzOHr0KPr06YPLly/X+/q2bdu4AJiV++2331BZWYmAgIAG79zNISYmBgCbJro/1iP7YO6LUu5n+vTp+ivoZs2ahfPnz8uciMzNaLdRuXDhAlxcXNChQwdjvJwkpaWl8PLy4i0LjOTFF19EQkIC5syZo39HZU4nTpxAv3794OrqiqKiIri5uZk9A9kGOeoRwJpkTEVFRfDz84NWq0Vubi4CAwPljgQAqKmpQWRkJPbu3YuQkBD8/vvvrFV2xGg3+uratavZCxQZl+5dnVxXqfTp0wcdOnRAdXU1MjIyZMlAtoH1yPqlpKRAq9WiX79+FtMwAX/ci3PdunXw8/NDVlYW5s+fL3ckMiPJi1uuXr263uezZs0yehiSz4ULF3DmzBk4OTkhKipKlgwKhQLjxo3D119/jaSkJP3pOqI7sR7ZPrkuSpGiffv2WLNmDcaOHYtvvvkGQ4cOxdy5c+WORWYg+fRcZGTk/56kUFjEIoQcCjeeFStWYP78+Rg1ahR27twpW46NGzfi4YcfRq9evXDq1CnZcpBls8R6BLAmGYtWq0Xbtm2Rn5+P9PR0REREyB3pruLj4/H3v/8dSqUSW7duRVRUlFnuokDyMdqcJjmwQBnPhAkTsG3bNrz33nt49dVXZctRUlICX19faDQaXLx4EZ07d5YtC5GhWJOM4+DBgwgLC0PLli1RWFgIZ2dnuSPdlVarxcSJE7F161YAQGBgICZPnowpU6Zg6NChcHR0lDkhGZvR5jSR9aqurkZ6ejoA+YfCW7VqhSFDhgAAkpOTZc1CRPK4fakBS22YAMDBwQGrV6/GrFmz4OHhgStXruCTTz7ByJEj0b59ezz99NPYvn07amtr5Y5KRsKmibBr1y5UVVWhffv2CA4OljsOb6lCZOfkvijFEK1atcJ3332H/Px8bN68GX/5y1/g5eWFmzdv4vPPP0d0dDTatm2LOXPm4JdffoFarZY7MjUDmyaqN+HSEs7H65qmtLQ01NTUyJyGiMypoKAA+/fvB/C/WmAN3Nzc8NBDD2H16tW4desWkpKS8MQTT8DPzw9FRUVYtWoV4uLi4Ofnh0ceeQTr16/HyZMnUVpaKnd0MgDnNBF69OiBnJwc/PTTT5g0aZLccepNAt25cydGjRoldyQiSViTmu+HH37A//t//w/9+/dHVlaW3HGara6uDrt378bGjRvx008/NVi9HvjjNi0dOnRAhw4d0L59+7v+6+vrCwcHjnPITfKSA2Sbzp07h5ycHDg5OWHMmDFyxwHwxzyBmJgY/Oc//0FSUhKbJiI7YslLDTSFk5MTIiIiEBERgU8++QT79+/Hxo0bkZqaitzcXJSUlKC8vBynT5/G6dOn7/k6zs7O6Nq1K2bOnIk5c+ZY1NpV9sTgkaZVq1ahRYsWmDp1ar3H169fj8rKSsyePduoARvDd3XNt3z5cjz33HOIiIjQTwa3BP/973/x6KOPYsCAATh69KjccchCWVI9AliTmkur1aJNmzYoKCiwm1HmiooKXLt2DVevXtX/e+fHt27dwu3/q3ZwcMC4cePwxBNPYMKECRY9Wd7mCAMFBQWJHTt2NHh8586dokePHoa+XLOoVCoBQKhUKrPu15bExsYKAGLZsmVyR6nn5s2bAoAAIK5fvy53HLJQllSPhGBNaq79+/cLAMLT01PU1NTIHcdiqNVqcenSJfHf//5XRERE6GsjANGuXTvx97//XVy4cEHumHbB4BOkubm56NKlS4PHO3XqhNzc3Ob0b2RmVVVVFrPUwJ38/f0RGhoK4I/bKRDdDeuRbdGdmouOjuboyW1cXFzQqVMnPPLII0hPT8eZM2fwyiuvwM/PDzdu3MC7776Lrl27YuzYsVi/fj0voDEhg5smf39/ZGdnN3g8KysLPj4+RglF5rFz505UV1ejQ4cOFnlHeC49QPfDemRbdEsNWNqbOEvTo0cPLFu2DFevXsX69esxduxYAEBqaiqmTZuGDh064JVXXsHZs2dlTmocVVVVOH78OFJTU/Hbb7/h0KFDOHHiBC5cuIC8vDyoVCrU1NTUO4VpKgZPBJ85cyaee+45tGzZEiNHjgTwxzo/zz//PGbMmGH0gGQ6und148ePt4ilBu40btw4vPPOO0hNTYVGo+HqutQA65HtyM/Px8GDBwGwaZLKxcUFDz/8MB5++GFcvHgRK1euxDfffIMbN27ggw8+wAcffIAhQ4YgKioKkZGRGDx4MNzc3OSOfVfV1dW4cOECcnJyGmxXr16V9BoODg5wd3eHm5ubfnN3d8fatWsRFBRklJwGTwSvqanBX/7yF6xfvx5OTn/0XFqtFrNmzcLnn38OFxcXowSTgpMum04Ige7du+PChQvYtGkTJk6cKHekBurq6uDr6wuVSoX9+/cjLCxM7khkYSypHgGsSc3xn//8B3/5y18QEhKCzMxMueNYrbq6Omzbtg1fffUVtm3bBq1Wq/+aUqnE4MGDERERgcjISISHh8PV1dXkeUpKSlBYWIiioiL9v7du3cL58+f1jdGVK1caHSlq1aoV2rdvj9raWlRVVaGyshJVVVWoqqq67wjT6dOn0bNnT6McT5PXacrJyUFmZibc3NwQHByMTp06GSWQIVigmu7s2bPo2bMnnJ2dUVhYiJYtW8od6a4efvhhbNy4EUuXLsWiRYvkjkMWyhLqEcCa1ByPPPII1qxZg9dffx3vvvuu3HFswtWrV5GUlIT09HSkp6fjxo0b9b6uVCoxZMgQREZGIiIiAuHh4VAqlXd9LY1Gg5KSknqNz70+vv1flUolOa+npyeCgoL0W/fu3fUf+/j43PWMiBACNTU19ZqoO5uqkSNHwt3d3bAf3j1wcUs79cknn+CFF17A6NGjkZaWJnece/r666/xxBNPYMiQIdi7d6/ccYgaxZrUNBqNBv7+/igqKkJGRgZGjBghdySbI4RATk4Odu7cifT0dOzcuRN5eXn1vsfV1RVDhw5F27ZtGzRCJSUlzZoz5OXlBW9vb/j4+MDb2xu+vr7o0qVLvQbJz8/PIqeK3M7gOU1TpkxBWFgYXn311XqPL1u2DAcPHsT69euNFo5Mx1omXMbExAAA9u/fj6KiInh7e8uciCwJ65FtOHjwIIqKiuDl5aW/YTcZl0KhQI8ePdCjRw/MmzcPQgicOXOmXhN169Yt7Nixo9HXadmyZb3mx8fHB61bt4aPj0+9x27/t3Xr1vrT59bO4JEmPz8/7Nixo8GNXY8dO4aoqCjcvHnTqAEbw3d1TVNZWQlvb2+o1WqcOHECffr0kTtSo/r164cTJ05g7dq1mDZtmtxxyIJYUj0CWJOaatGiRXjrrbcwdepUrFu3Tu44dkkIgdOnT2PXrl36/0fc3vjoNntfCsLg1q+8vPyukyudnZ1540ErkZ6eDrVajY4dO6J3795yx7mvcePG4cSJE0hKSmLTRPWwHtkGaxn5tmUKhQK9e/e2iv8nyMngdZqCg4Oxdu3aBo//+OOPFj9iQX+w9KUG7nT7ek1WPAWPTID1yPrdvHkThw4dAvC//9aJLJXBI00LFy7E5MmTcf78eYwePRoAkJaWhjVr1nD+gBUQQljdu7rhw4fD3d0dN27cwLFjx9C/f3+5I5GFYD2yfsnJyQCAP/3pT2jXrp3MaYgaZ/BIU1xcHDZv3oxz587hmWeewUsvvYSrV69i+/btFrnWD9V39uxZXLx4ES4uLvr/yVg6V1dXREZGAuDq4FQf65H1s7Y3cWTfmjSdfcKECZgwYUKDx48fP45+/fo1OxSZju7U3MiRI9GiRQuZ00gXExODX3/9FUlJSfi///s/ueOQBWE9sl51dXX6kabx48fLnIbo/gweabpTWVkZvvzyS4SFhSEkJMQYmciErPVdnW6uw+7du1FWViZzGrJUrEfW5cCBAyguLkarVq0QHh4udxyi+2py05SRkYFZs2ahXbt2+OCDDzB69Gjs27fPmNnIyMrLy7Fr1y4A1veurnv37ujatStqa2uRnp4udxyyMKxH1kk38h0TE2Mz6/iQbTPorzQvLw/ffvstVq5cidLSUkybNg1qtRqbN2/mlSpWID09HTU1NejcubPR7sNjLgqFAuPGjcNnn32G5ORk/PnPf5Y7EsmM9cj6WevIN9kvySNNcXFx6NmzJ7Kzs5GQkIDr169j+fLlpsxGRqZ7VxcbG2sVSw3cSXeKLjExkUsP2DnWI+uXl5eHI0eOAOBSA2Q9JDdNiYmJmDt3LpYuXYoJEybA0dHRaCFWrFiBzp07w9XVFeHh4Thw4IDRXpv+cPtSA9Z2ak4nMjISzs7OuHjxIs6dOyd3HJIR65H1010JGxoaijZt2sichkgayU2TbgJuaGgowsPD8emnn6KgoKDZAdauXYsFCxZg8eLFOHLkCEJCQhATE4Nbt241+7Xpf06fPo3Lly/DxcVFf/m+tWnRooX+Rp5cesC+sR5ZP56aI6skDFReXi5Wrlwphg0bJpydnYWDg4NISEgQpaWlhr6UEEKIsLAw8eyzz+o/12g0IiAgQMTHx9/3uSqVSgAQKpWqSfu2Jx988IEAIKKjo+WO0izLli0TAMT48ePljkIWwJLqkRCsSVLV1taKVq1aCQBiz549cschkszgG/be7syZM1i5ciW+//57lJSUIDo6Glu2bJH8/JqaGri7u2PDhg31FqKbPXs2SkpK8PPPPzf6fKk3xxRC4PPPP5ecyxZ9+eWXyMzMxMcff4wXXnhB7jhNplsR3M3NDR988IFVzs2ydd26dcPYsWPNvl+56xEgvSYdOHAAhw8flpzN1ly7dg3vvPMOvL29cevWLaOeXiUyKWN0XnV1dWLTpk0iLi7OoOddu3ZNABB79+6t9/grr7wiwsLCGnx/dXW1UKlU+u3KlSuS3tVpNBoBgBsgTp8+bdDvyNJotVrRvn172X+O3O69TZ06Vda/EXPVIyGaXpMWLlwo++/JErYZM2YY9DsikluzF7cEAEdHR0ycONGgd3VNER8fDy8vL/0WGBgo6XkODg6orq7G4sWLUV1dDSGE3W264+/cubNJf0emplAocPXq1SYfv73//s1x/OvWrZP1b8Rc9Qhoek168803+TdZXY2ePXtCrVab+LdkmdRqNZYsWcLjt7Ljb9bpueYydDhcrVbX+wELIVBTUwNfX9/7nqaROmxuq3j8PH57Pn4pmnJ6jjWp6Xj8PH5rPH6jjDQ1lYuLC0JDQ5GWlqZ/TKvVIi0tDUOGDGnw/UqlEp6envrNy8sLfn5+nNdCRM1maD0CWJOI7I3s69YvWLAAs2fPxsCBAxEWFoaEhARUVFTg8ccflzsaEdkZ1iMiaozsTdP06dORn5+PRYsWIS8vDwMGDEBSUhIXOyMis2M9IqLGyN40AcD8+fMxf/58k+5DqVRi8eLFUCqVJt2PpeLx8/jt+fgNYY56BPB3wuPn8Vvj8cs6EZyIiIjIWsg6EZyIiIjIWrBpIiIiIpKATRMRERGRBGyaiIiIiCRg00REREQkAZsmIiIiIgnYNBERERFJwKaJiIiISAI2TUREREQSsGkiIiIikoBNExEREZEEbJqIiIiIJGDTRERERCQBmyYiIiIiCdg0EREREUnApomIiIhIAjZNRERERBLI2jRlZGQgLi4OAQEBUCgU2Lx5s5xxiMjOsSYRUWNkbZoqKioQEhKCFStWyBmDiAgAaxIRNc5Jzp3HxsYiNjZWzghERHqsSUTUGM5pIiIiIpJA1pEmQ6nVaqjVav3nQgjU1NTA19cXCoVCxmREZI9Yk4jsi1U1TfHx8Vi6dGmDx1UqFTw9PWVIROZ2/fp1tG/fHgqFAhMnTjTp/5i2bt2K2tpanDlzBj169DDZfsh6sSbRe++9h9dff92s+xw0aBD+/e9/IzQ01Kz7JQOaptzc3Hqfd+zY0ehh7uf111/HggUL9J+XlpYiMDDQ7DlIPsnJyQD+KBo//fSTSfc1evRopKenIzk5mU2ThbGEegSwJhGQlJQEAHjnnXcwffp0k+5r27Zt+Mc//oGDBw8iLCwMzzzzDN566y20atXKpPul/5HcNHXu3BkKhQJCCCgUCmg0GlPmuiulUgmlUmn2/ZLl0DVNMTExJt9XTEyMvmn629/+ZvL9kXSWUI8A1iR7V1paij179gAAZsyYga5du5p0f3/729/w8MMP4+WXX8YPP/yATz/9FOvXr8eHH36IRx55hKeEzUDyRHCtVguNRqP/1xjKy8uRmZmJzMxMAMDFixeRmZnZ4F0kEQBoNBqkpqYCMF/TBADp6en15q2Q/ExRjwDWJDLMjh07UFdXh6CgIJM3TDrt2rXDf//7X2zfvh09e/bEzZs38eijj2LMmDE4ffq0WTLYNSGj9PR0AaDBNnv2bEnPV6lUAoBQqVSmDUoWYf/+/QKA8PLyErW1tSbfn0ajEW3atBEARFpamsn3R/JjTSJDPPnkkwKA+Nvf/ibL/qurq8Xbb78tXF1dBQDh7Ows/v73v4uKigpZ8tgDySNNarUatbW1+s/Pnz+PN954A3/5y1/wj3/8AxcvXjS4YYuIiIAQosH27bffGvxaZPt0p+aioqLg5GT6axgcHBz0o026fZNlMEU9AliTSDohhH4+07hx42TJoFQq8cYbb+DkyZOYMGECamtr8e6776Jv37745ZdfZMlk6yQ3TTExMfj5558BAHv27NH/Umpra7Ft2zb069cPv//+u8mCEukKlDlOzeno9qXbN1kG1iOS25kzZ3D58mUolUqMGjVK1ixdunTB1q1bsWnTJgQGBuLSpUuIi4vDxIkTcfbsWWi1Wlnz2RKFEEJI+UYvLy8cOnQIQUFBiIiIwAMPPICPPvpI//WFCxciPT0du3fvNlnYO5WWlsLLy4uX99qBkpIS+Pr6QqPR4PLly2a7Wio/Px9t2rSBEALXr19Hu3btzLJfapwl1iOANcmeJCQk4MUXX0R0dDRSUlLkjqNXUVGBN998Ex999BHq6uoAAE5OTmjfvj3at2+PDh06oEOHDg0+bteuHVxcXGROb/kkn+PQaDT6CZenT5/GJ598Uu/rjz32GBISEowajkgnLS0NGo0GvXr1Muvl5X5+fnjggQdw+PBhpKSkYPbs2WbbN90b6xHJTe5Tc/fi4eGB999/H7NmzcLzzz+vn6x++fJlXL58+Z7PUygU8Pf3R4cOHdCmTRv4+PjA29sb3t7e+o/vfMzT09PurtiT3DSFh4dj69at6NWrF7p164asrCyEhITov56ZmQlvb2+ThCQy51IDdxo3bhwOHz6M5ORkNk0WgvWI5FRVVYVdu3YBsLymSadv377Yvn07amtrkZeXh2vXruHq1au4evVqg4+vXbuGmpoa3Lx5Ezdv3pS8D0dHR7Ru3Ro+Pj4IDw/HlClTMHbsWLi6uprwyOQluWl6++23ERsbi4qKCsycORMvvfQScnJy0Lt3b5w5cwb/+te/zL4qKtkHIYS+aZKjQMXExOCdd95BSkoKNBoNHB0dzZ6B6mM9Ijnt2rUL1dXVCAwMRO/eveWO0yhnZ2cEBgY2uuiqVqtFYWGhvpHKz89HYWEhioqKUFRUpP/49n+rqqqg0WhQUFCAgoICnDlzBqtXr0aLFi0wYcIETJkyBbGxsWjRooUZj9YMDLnUbu/evWLw4MFCoVDU29q3by8SEhKMdkmfVLy81z6cPHlSABBKpVKWS2lrampEy5YtBQBx4MABs++f7s7S6pEQrEn24vnnnxcAxBNPPCF3FNlUVlaKa9euiezsbJGUlCSee+450aFDh3pLdbi6uoqHHnpIrF69WhQXF8sd2SgkTwS/XX5+Pi5cuACtVot27dqhc+fORmzjpOOkS/tgCRMuJ02ahM2bN+Ott97CP/7xD1ky0N1ZSj0CWJPsRa9evXDmzBls3LgRkydPljuOxdBqtTh48CB++uknbNy4EefPn9d/zdnZGWPGjMGUKVPw0EMPwc/PT8akTdekpslSsEDZh9jYWCQlJeGDDz7ASy+9JEuGzz//HE8//TSGDx+O3377TZYMZPlYk2zfxYsX0bVrVzg6OqKwsBBeXl5yR7JIQghkZ2dj48aN2LhxI06ePKn/moODA4YNG4b27dvD3d0dbm5u+q2xzz08PPQT0Vu1agUHB8mrJhmN5KZp9erV9T6fNWuWSQIZggXK9lVXV8Pb2xtVVVU4duwY+vXrJ0sOFkrLYon1CGBNsge6N1AjRoxARkaG3HGsxunTp/UjUEeOHGn26ykUCv0k9Ptd5TdkyBCj/fcouWmKjIysF3bHjh1GCdAcLFC2LzU1FWPHjkX79u1x5coVWS9v7dmzJ86ePYuffvoJkyZNki0HWWY9AliT7IHuVP3bb7+NN954Q+44VunixYtIT09HaWkpqqqqUFlZiaqqqrtut3+tvLwcRUVFKC8vN2h/WVlZ6N+/v1GyS756Lj093Sg7JDLE7auAy70eSExMDM6ePYukpCQ2TTJjPSI51NTUIC0tDYDlLjVgDbp06YIuXbo0+fk1NTUoLi6+61V9t/+r+9jX19do2U1/Ay+iZpBzfaY7xcTEYPny5UhOToYQQvYmjojM6/fff0dZWRn8/Pzwpz/9Se44dsvFxQVt2rRBmzZtzL5v88+iIpLo6tWrOHHiBBwcHBAVFSV3HERERMDFxQWXL1/G2bNn5Y5DRGZ2+8i3HJOQSX78rZPF0i0vMGjQIItY3dnDwwMjRowA8L8RMCKyH5Z66xQyHzZNZLEs6dScji4LmyYi+3Ljxg1kZmZCoVBg7NixcschmbBpIouk0WiQmpoKwLLe1emapp07d6K6ulrmNERkLrqR79DQUKtdmJGaz+CmadWqVVi/fn2Dx9evX4/vvvvOKKGIDh48iOLiYrRq1QqDBg2SO45ecHAw2rVrh8rKSuzevVvuOHaP9YjMhafmCGhC0xQfH3/Xy/f8/f3x7rvvGiUUke70V1RUFJycLOciT4VCwVN0FoT1iMxBo9HoR5rYNNk3g5um3Nzcu66v0KlTJ+Tm5holFJElzmfSYdNkOViPyBwOHTqEoqIieHl5ITw8XO44JCODmyZ/f39kZ2c3eDwrKws+Pj5GCUX2rbi4GPv37wdgmU1TdHQ0FAoFjh07huvXr8sdx66xHpE56E7NRUdHW9TIN5mfwU3TzJkz8dxzzyE9PR0ajQYajQY7duzA888/jxkzZpgiI9mZtLQ0aLVa9OnTB4GBgXLHacDHxwcDBw4E8L/JoSQP1iMyB85nIh2DW+a33noLly5dwpgxY/Qdt1arxaxZsziHgIzi9gXkLFVMTAwOHjyIpKQkPPbYY3LHsVusR2RqhYWFOHDgAADLrklkHpJv2HunnJwcZGZmws3NDcHBwejUqZOxs90Xb45pe4QQ6NixI65evYqkpCSLLVJ79uzB8OHD4e3tjVu3bsHR0VHuSHbNEuoRwJpki9auXYsZM2agb9++OH78uNxxSGZNPjkbFBSEoKAgY2YhwqlTp3D16lW4urpi5MiRcse5p/DwcHh5eaGoqAiHDx9GWFiY3JHsGusRmYrugg+emiOgCXOapkyZgvfff7/B48uWLcPUqVONEorsl65AjRw5Em5ubjKnuTcnJyeMGTMGAK+ikxPrEZmSEILzmageg5umjIwMjB8/vsHjsbGxyMjIMEoosl/W9K6OSw/Ij/WITOnYsWO4ceMG3N3dMXz4cLnjkAUwuGkqLy+Hi4tLg8ednZ1RWlpqlFBkn6qqqrBr1y4A1jHhUpdx3759KCkpkTeMnWI9IlPSjTJFRkbC1dVV5jRkCQxumoKDg7F27doGj//444/o06ePUUKRfcrIyEB1dTU6dOiA3r17yx3nvjp16oRevXpBo9EgLS1N7jh2ifWITImn5uhOBk8EX7hwISZPnozz589j9OjRAP5YV2fNmjV3vQcUkVS3rwKuUChkTiNNTEwMTp8+jeTkZEyZMkXuOHaH9YhMpaysTH9/STZNpGPwSFNcXBw2b96Mc+fO4ZlnnsFLL72Eq1evYvv27Zg4caIJIpK9sORbp9zL7fOamrh6BzUD6xGZSnp6Ompra9GtWzd0795d7jhkIZq8TtPdHD9+HP369TPWy90X10SxHVeuXEHHjh3h4OCAgoICtG7dWu5IklRWVsLb2xtqtRqnTp1Cr1695I5E/z9z1yOANcmWPPPMM/j3v/+NZ599Fp9++qnccchCGDzSdKeysjJ8+eWXCAsLQ0hIiDEykR3SjTKFh4dbTcMEAO7u7vr1pHTzH0g+rEdkDEIIJCYmAuCpOaqvyU1TRkYGZs2ahXbt2uGDDz7A6NGjsW/fPmNmIztijafmdLj0gPxYj8iYcnJycOnSJbi4uCAiIkLuOGRBDJoInpeXh2+//RYrV65EaWkppk2bBrVajc2bN/NKFWqyuro6bN++HYD1Nk0vv/wydu3aherqal6abCasR2QqulHj4cOHo0WLFjKnIUsieaQpLi4OPXv2RHZ2NhISEnD9+nUsX77clNnIThw8eBAlJSVo3bo1Bg0aJHccg/Xt2xft27dHVVUVfvvtN7nj2AXWIzIlLjVA9yK5aUpMTMTcuXOxdOlSTJgwwag3KF2xYgU6d+4MV1dXhIeH6+8oTfZBd1orKirKKm98q1AoMHbsWAA8RWcurEdkKlVVVdi5cycANk3UkOSmaffu3SgrK0NoaCjCw8Px6aefoqCgoNkB1q5diwULFmDx4sU4cuQIQkJCEBMTg1u3bjX7tck6WNOtU+5Fl51Nk3mwHpGp/Pbbb6iqqkJAQIDZr74kKyAMVF5eLlauXCmGDRsmnJ2dhYODg0hISBClpaWGvpQQQoiwsDDx7LPP6j/XaDQiICBAxMfH3/e5KpVKABAqlapJ+yb5FRYWCgcHBwFAXLlyRe44TWYrx2FtLKkeCcGaZAsWLFggAIg5c+bIHYUsULPWaTpz5gxWrlyJ77//HiUlJYiOjsaWLVskP7+mpgbu7u7YsGFDvYXoZs+ejZKSEvz888+NPl/qmihCCHzzzTeSc5H5HD9+HAkJCejbty+OHz8ud5xmGTx4MPbv34+nnnoKAwcOlDuObLp06aJfnduc5K5HgPSadPjwYWRmZkrORubzzjvv4OLFi1i3bh2mTp0qdxyyNMbovOrq6sSmTZtEXFycQc+7du2aACD27t1b7/FXXnlFhIWFNfj+6upqoVKp9NuVK1ckvavTaDQCADcL3hYsWGDQ344lWrx4sew/R0vYpk6dKuvvwVz1SIim16SFCxfK/nvidu/NwcFBFBUVGfT3Q/ah2YtbAoCjoyMmTpxo0Lu6poiPj4eXl5d+CwwMlPQ8BwcHVFdXY/HixaiuroYQwu42Sz/+Dz/80KR/O2q1GkuWLIFarTbZPpYsWSL7z9ESfv/r1q0z2c9YCnPVI6DpNenNN9+0+P8mbelv0tBNo9GYfJFdc9QkS2atx2/U26gYytDhcLVaXe8HLIRATU0NfH1973uDV3u/vQGPn8dvz8cvRVNOz7EmNR2Pn8dvjcdvlJGmpnJxcUFoaCjS0tL0j2m1WqSlpWHIkCENvl+pVMLT01O/eXl5wc/P777FiYjofgytRwBrEpG9MWhFcFNYsGABZs+ejYEDByIsLAwJCQmoqKjA448/Lnc0IrIzrEdE1BjZm6bp06cjPz8fixYtQl5eHgYMGICkpCS0adNG7mhEZGdYj4ioMbI3TQAwf/58zJ8/36T7UCqVWLx4MZRKpUn3Y6l4/Dx+ez5+Q/x/7d17WFTXuT/w7wzCMKCgCCikihrvimhRCMZ4ARXQ0JBaL6mNxKaxMWrS4y8mTVslxkRiano4MVZjSk2TNMZLquY0ggqiiJdYjwU0GoNXVMS7M1xkRob1+yPPTCV4mYGZWXvY38/z7EdmMzPrXTC8vnvttdd2Rz4C+Dth/9l/T+y/1IngRERERJ5C6kRwIiIiIk/BoomIiIjIDiyaiIiIiOzAoomIiIjIDiyaiIiIiOzAoomIiIjIDiyaiIiIiOzAoomIiIjIDiyaiIiIiOzAoomIiIjIDiyaiIiIiOzAoomIiIjIDiyaiIiIiOzAoomIiIjIDiyaiIiIiOzAoomIiIjIDiyaiIiIiOwgtWgqKChASkoKwsPDodFosGnTJpnhEJHKMScR0f1ILZqqq6sRFRWF5cuXywyDiAgAcxIR3V8rmY0nJycjOTlZZghERDbMSUR0P5zTRERERGQHqSNNjjKZTDCZTLbHQgiYzWYEBwdDo9FIjIyI1Ig5iUhdPGqkKSMjA4GBgbatbdu2CA0NRWVlpezQyE3MZjMCAgKg0Wjcsul0OlRXV8vuNikUcxJ98cUXbstHGo0GgwYNwu3bt2V3W7U8aqTptddew9y5c22PjUYjOnXqJDEicrd9+/ahsrISISEh2LVrl0uP5pOSknD27Fns3LkT48ePd1k75LmYk+if//wnAOCRRx5BXFwc9Ho9/Pz8oNfrbdsPH+v1evj6+kKrtX/corq6GomJiSgqKsLbb7+N+fPnu6pLdB92F01arRYajQZCCGg0GlgsFlfGdVc6nQ46nc7t7ZJy5OTkAAASExPRp08fl7aVnJyMlStXIicnh0WTwighHwHMSWpXX19vy0lvvvkmEhISXNresmXL8POf/xyLFi1CamoqIiMjXdoeNWZ30XT69GmnN15VVYUTJ040aKOoqAhBQUHo3Lmz09sjz2dNUElJSS5vKykpyVY0kbK4Ih8BzEnkmOLiYlRUVMDf3x/Dhg1zeXtTpkzB2rVrsXnzZjzzzDPYv38/vL29Xd4u3UFIlJ+fLwA02tLS0ux6vcFgEACEwWBwbaCkCOXl5QKA0Gg04vLlyy5vz2g0ilatWgkAorS01OXtkXzMSeSIxYsXCwDiJz/5idvaLC8vF+3atRMAxFtvveW2dul7dp9Q/eKLL1BTU+PMeg0jR46EEKLR9tFHHzm1HWoZtm3bBgCIjo5GSEiIy9tr06aN7ehx69atLm+P7OeKfAQwJ5FjsrOzAbhn5NsqLCwM//M//wMAWLhwIb755hu3tU0OXD03ceJEhIWFYcaMGfj6669dGRPRXbnz1JyVtS2eolMW5iOS7ebNm9i7dy8A9+YkAPjFL36Bxx9/HGazGdOnT0ddXZ1b21czh5YcePnll3Hw4EHExcWhf//+yMzMxLVr11wVG5GNxWKxjTTJKJp27NjRYD0eko/5iGTKy8uDxWJBr1690LVrV7e2rdFosHLlSgQGBuJf//oX/vSnP7m1fTVzqGj69a9/jUOHDuFf//oXhg8fjoULF+Khhx7CpEmTsH37dlfFSISDBw/i+vXrCAwMRGxsrNvaHTBgADp27IiamhoUFha6rV16MOYjksl6ak7WbXceeughZGZmAgAWLFiAb7/9VkocatOkxS2jo6Px5z//GRcvXsSHH36IK1euICkpye3VNqmH9fTY6NGj0aqV+5YX02g0SExMbBADKQvzEbmbEMKWD2TeqzAtLQ3JyckwmUyYPn26tKU31MTuouluiwj6+vri6aefRn5+Po4fP46f//znTg2OyErGfCYrzmtSHuYjkunIkSO4cOEC9Ho9hg8fLi0OjUaDDz74AAEBAdi/f79t5IlcRyOEEPY8UavVoqKiAqGhoa6OyW5GoxGBgYEwGAwICAiQHQ65yPXr1xESEoL6+nqUlZW5fcXla9euISQkBEIInDt3Dj/60Y/c2j41psR8BDAnqcU777yDV199FePGjcNXX30lOxz85S9/wXPPPQdfX18UFxejZ8+eskO6J4vFgj/+8Y9YunSpw1fAajSaB660frfV2GfMmIEOHTo4JX6HFrcMDg52SqNEjsjNzUV9fT369esn5RYV7du3R0xMDL7++mts27YNv/zlL90eAzXEfEQyyZ7P9EPPPvss1q1bh+3bt+OXv/wldu3aBS8vL9lhNXL+/HlMmzYN+fn5TX6Ppiw1MmHCBPcXTREREU5pkMhRMk/NWSUlJeHrr79GTk4OiyYFYD4iWSorK20XhcjMSXfSaDT4y1/+gn79+mHPnj1YtmwZfvOb38gOq4GNGzfiV7/6Fa5fvw5/f39kZmZi9OjRDr2HxWJBbW0tbt26ZdtqamoaPL7bPmceYNl9eu7jjz9u8HjatGlOC6KpOBTe8gkh8NBDD+HixYvYvn27w39kzrJ//37ExcWhbdu2uHLlilsno1NjSsxHAHOSGmzatAlPPvkkunfvjtLSUtnhNPDBBx/g+eefh16vR0lJCbp37y47JNTU1GDu3Ln44IMPAHx/4cZnn32m6FOI92N35l+9erXta41Go5gkRS3b4cOHcfHiRfj5+bnl3k73MmTIELRr1w43btzAgQMHMHToUGmxEPMRyaOEq+buZcaMGVi3bh127NiBZ599Fvn5+dBqm3SRvFMUFxdjypQptuUQ5s2bhzfffBM+Pj7SYmouu4um5pyDJGoqa4IaNWoUfH19pcXh5eWFsWPHYu3atcjJyWHRJBnzEckghJBy6xR7WU/TRUZGoqCgAH/+858xe/Zst8chhMB7772HV155BWazGWFhYfj444+lnSlwJnklKJEdlDCfyYpLDxCp27Fjx1BWVgadToeRI0fKDueuunbtiiVLlgAAXn31VZw6dcqt7V+6dAnjx4/Hb37zG5jNZqSkpKC4uLhFFEyAAyNNRO6mtAmX1kUuDx48iCtXrrjlpsFEpBzWA6YRI0bAz89PcjT3NnPmTKxfvx67du1Camoq4uLiHHp9UFAQevTogR49eqB79+7o2LHjXddG+6GcnBykpaXh8uXL8PX1xbvvvouZM2fa9VpPwaKJFCs/Px+3b9/Gww8/rIgJjWFhYYiKikJxcTG2b9/OxROJVEZpSw3ci1arRVZWFgYMGIDDhw/j8OHDzXq/1q1bo3v37g0KKevXoaGhMJvN+O1vf2tbXLN///5Ys2YN+vfv74TeKAuLJlIsJZ2as0pKSkJxcTFycnJYNBGpSFVVFQoKCgAov2gCgIcffhi5ubnIzc116HVCCFy6dAmlpaUoLS1FWVkZqqqqUFRUhKKiokbPb9OmDfz9/VFRUQEAmDNnDpYsWQK9Xu+MbigOiyZSpDsnXFpPiylBYmIilixZgq1bt6K+vl7qlSlE5D47d+6E2WxGly5dPOZy+bi4OIdPzf2QyWTC6dOnbUXUiRMnGhRUlZWVqKysRHBwMFavXo3HH3/cSdErk8NF0+rVq9G6dWtMnDixwf7169ejpqYGaWlpTguO1Ku0tBRnzpyBt7c3Ro0aJTscm0cffRT+/v64fPkyioqK8OMf/1h2SKrGfETucuepuZY0R+dBdDodevfujd69ezf6Xm1tLU6fPo3z588jOjoaQUFBEiJ0L4cPkzMyMu66umZoaCgWL17slKCIrKfmHnvsMbRu3VpyNP/h4+ODhIQEALyKTgmYj8gd7hz59oRTc+7i6+uLPn36YMyYMaoomIAmFE1lZWXo2rVro/0REREoKytzSlBEW7duBaCs+UxW1pisMZI8zEfkDqWlpTh9+jR8fHwUNfJN7udw0RQaGoqSkpJG+4uLi9G+fXunBEXqVltba1u8UIlFk3WO1d69e2EwGCRHo27MR+QO1lEmpY18k/s5XDQ99dRTePHFF5Gfnw+LxQKLxYIdO3bgpZdewpQpU1wRI6nM7t27cevWLYSHhyvyktVu3bqhZ8+eqKurw44dO2SHo2rMR+QOSr51CrmXwxPBFy1ahDNnziAhIcF209L6+npMmzaNcwjIKe5cakCpEy6TkpLw3XffIScnB08++aTscFSL+Yhc7datW9i5cycAZY58k3tphBCiKS8sLS1FUVER9Ho9IiMjERER4ezYHoh3FG+Z+vXrh6NHj2LdunWNropSiuzsbIwbNw6dO3fGmTNnFFvcqYUS8hHAnNQSWf/WO3XqhLNnz/JvXeWavE6TdTVQImcqKyvD0aNHodVqFX2vohEjRkCn06GsrAzffvst+vTpIzskVWM+Ile589QcCyZyeE7ThAkTbDcDvNM777yj2FEB8hzWK9IeeeQRtGvXTnI09+bn54cRI0YA4NIDMjEfkatZJ4Hz1BwBTSiaCgoKMG7cuEb7k5OTbUvMEzWVEm+dci/WGFk0ycN8RK508uRJlJaWolWrVrb12UjdHC6aqqqq4OPj02i/t7c3jEajU4Iidbp9+7btPklKunXKvVhj3LVrF2pqaiRHo07MR+RK1gOiRx99lHPUCEATiqbIyEisXbu20f7PP/8cffv2dUpQpE779++H0WhE+/btER0dLTucB+rTpw86deoEk8mEXbt2yQ5HlZiPyJW4Cjj9kMMTwefPn4+f/vSnOHnyJOLj4wEAeXl5WLNmDdavX+/0AEk9rEd1Y8eOhZeXl+RoHkyj0SApKQkffvghcnJymFglYD4iV6mtrbWtw8a/bbJyeKQpJSUFmzZtwokTJ/DCCy/g//2//4fz588jNzcXqampLgiR1ELJt065F95SRS7mI3KVOxfZjYyMlB0OKUST12m6myNHjrh1BWeuidJyXL58GR06dAAAXLx4ER07dpQckX0MBgPat28Pi8WCU6dO3fU+aCSHu/MRwJzUksydOxf//d//jV/+8pfIysqSHQ4phMMjTT9UWVmJVatWISYmBlFRUc6IiVRo27ZtAIBBgwZ5TMEEAIGBgRg6dCgAjjYpAfMROQtvnUJ30+SiqaCgANOmTUNYWBiWLl2K+Ph47N+/35mxkYp40lIDP8SlB+RjPiJnOnv2LI4dOwYvLy9FL7JL7ufQRPCKigp89NFHyMrKgtFoxKRJk2AymbBp0yZeqUJNVl9f75HzmaySkpLw+9//Hnl5eTCbzXe9BJ6cj/mIXMV61VxcXBzatm0rNxhSFLtHmlJSUtCrVy+UlJQgMzMT5eXlWLZsmStjI5U4dOgQrl69ijZt2iAuLk52OA4bOHAgQkNDUVVVhb1798oORxWYj8iVeGqO7sXuoik7OxvPPvssFi5ciPHjxzv1kvDly5ejS5cu8PX1RWxsLA4cOOC09yblsyao0aNHw9vbW3I0jtNqtbaFLnmKzj2Yj8hVzGYz8vLyAHjmyDe5lt1FU2FhISorKxEdHY3Y2Fi8//77uHr1arMDWLt2LebOnYv09HQcOnQIUVFRSExMxOXLl5v93uQZPHk+kxXnNbkX8xG5SmFhIaqqqtChQwcMHDhQdjikNMJBVVVVIisrSzz66KPC29tbaLVakZmZKYxGo6NvJYQQIiYmRsyaNcv22GKxiPDwcJGRkfHA1xoMBgFAGAyGJrVN8l2/fl1otVoBQJw5c0Z2OE12+fJlodFoBABx4cIF2eGohpLykRDMSS3BvHnzBAAxbdo02aGQAjVrnabjx48jKysLn3zyCW7evIkxY8bgyy+/tPv1ZrMZfn5+2LBhQ4OF6NLS0nDz5k1s3rz5vq+3d00UIQQ+/fRTu+Mi9zl8+DD++Mc/onfv3jh27JjscJplyJAhOHjwIObMmYMhQ4bIDkeaiIgIDB8+3O3tys5HgP05qaioCIcPH7Y7NnKfN954AydOnMCaNWswZcoU2eGQ0jij8qqrqxMbN24UKSkpDr3uwoULAoDYu3dvg/3z5s0TMTExjZ5fW1srDAaDbTt37pxdR3UWi0UA4Kbg7aWXXnLos6NEf/jDH6T/HJWwTZw4UervwV35SIim56T58+dL/z1xu/em1WrF1atXHfr8kDo0e3FLAPDy8kJqaqpDR3VNkZGRgcDAQNvWqVMnu16n1WpRW1uL9PR01NbWQgihuk3p/c/MzHTpZ8dkMuH111+HyWRyWRuLFi2S/nNUwu9/3bp1LvsZ28Nd+Qhoek564403FP832ZI+k45uFosF7du3d+lnxx05Sck8tf9OvY2KoxwdDjeZTA1+wEIImM1mBAcHQ6PR3Lcttd/egP1n/9Xcf3s05fQcc1LTsf/svyf23ykjTU3l4+OD6Oho2+WdwPcLHebl5d11vR6dToeAgADbFhgYiJCQkAcmJyKiB3E0HwHMSURq49CK4K4wd+5cpKWlYfDgwYiJiUFmZiaqq6sxffp02aERkcowHxHR/UgvmiZPnowrV65gwYIFqKiowMCBA5GTk2O74z0RkbswHxHR/UgvmgBg9uzZmD17tkvb0Ol0SE9Ph06nc2k7SsX+s/9q7r8j3JGPAP5O2H/23xP7L3UiOBEREZGnkDoRnIiIiMhTsGgiIiIisgOLJiIiIiI7sGgiIiIisgOLJiIiIiI7sGgiIiIisgOLJiIiIiI7sGgiIiIisgOLJiIiIiI7sGgiIiIisgOLJiIiIiI7sGgiIiIisgOLJiIiIiI7sGgiIiIisgOLJiIiIiI7sGgiIiIisgOLJiIiIiI7SC2aCgoKkJKSgvDwcGg0GmzatElmOESkcsxJRHQ/Uoum6upqREVFYfny5TLDICICwJxERPfXSmbjycnJSE5OlhkCEZENcxIR3Q/nNBERERHZQepIk6NMJhNMJpPtsRACZrMZwcHB0Gg0EiMjIjViTiJSF48aacrIyEBgYKBta9u2LUJDQ1FZWSk7NCIcPHgQQUFB0Gg0btny8vJkd1n1mJNIyaZNm+a2fKTRaPDCCy+gvr5edrddyu6RprKysgaPO3fu7PRgHuS1117D3LlzbY+NRiM6derk9jiI7iYrKws3btwAAOh0OrRv3x5BQUG2f+/8+s5/27RpA7PZjFu3btm2mpqau35969YtFBYWori4GP/7v/+LhIQEyb2WQwn5CGBOIuW6ePEiPvnkkwb7WrVqBb1eD71eDz8/P9vX99pn73MOHjyIl156CStWrIDZbMYHH3wALy8vST13LbuLpi5dukCj0UAIAY1GA4vF4sq47kqn00Gn07m9XaIHEUJgy5YtAICNGzfiiSeecNnpmS+++AI/+9nPkJ2djczMTJe0oXRKyEcAcxIpV05ODgBg0KBB2LlzJ/R6Pby9vV3SVlxcHNq1a4e0tDRkZWXBZDJh9erVaNXKo2YA2cXuHrliyK2qqgonTpywPT59+jSKiooQFBQk7ciRqCmOHTuGsrIy6HQ6jBkzxqXzWRISEuDl5YXvvvsOp06dQrdu3VzWllK56hQAcxK1FNnZ2QCAxx9/HAEBAS5v7xe/+AV0Oh1+/vOf49NPP4XJZMLf//53lxVqskid03Tw4EEMGjQIgwYNAgDMnTsXgwYNwoIFC2SGReQw6yjTiBEj4O/v79K22rZti6FDhwL4z9EkOQdzErUEdXV12LZtGwC4dQmNiRMnYsOGDfD29sb69esxceLEBhdKtAQOFU3FxcX461//ilOnTgEAvvnmG7zwwgt4/vnnsXXrVocbHzlyJIQQjbaPPvrI4fciksl6VDdu3Di3tGdNhNZ21cjZ+QhgTqKWYd++fTAYDAgKCkJMTIxb237iiSewefNm6HQ6bN68GU8++SRu3brl1hhcye6i6R//+Aeio6PxyiuvICoqCrm5uRg2bBhKS0tx5swZjB8/Hp999pkrYyVSpMrKSuzevRuA+47qkpKSAAA7duxocUdy9mA+Iro368FUYmKilAnZycnJ+Oc//wm9Xo/s7Gz85Cc/QXV1tdvjcAlhpx//+MfizTffFEIIsWbNGtG2bVvxxhtv2L6/dOlSMXDgQHvfzikMBoMAIAwGg1vbJbrTxo0bBQDx8MMPi/r6ere0WV9fLzp27CgAiO3bt7ulTSVRYj4SgjmJlCEqKkoAEJ988onUOHbt2iVat24tAIjhw4cLo9EoNR5nsHuk6fjx45g6dSoAYPLkyaiurkZqaqrt+08++WSDCZREamE9qktOTnbbgoYajcY22qTGeU3MR0R3d+HCBRQXF0Oj0SAxMVFqLMOHD8e2bdsQEBCAgoICJCYmwmAwSI2puewumtq0aYNr164BAG7evIm6ujrbYwC4du0aWrdu7fwIiRRM3LHUgLvvWWYtmtQ4r4n5iOjurAdRgwcPRkhIiORovl+OIC8vD+3atcO+ffswevRoXL9+XXZYTWZ30TR69GjMmjULf//735GWloaxY8fitddew7fffovjx49j3rx5GDZsmCtjJVKcb775BufPn4evry9Gjhzp1rbHjBkDrVaLo0ePNlrssaVjPiK6O3dflGKPwYMHY8eOHQgODsbBgwcRHx+PK1euyA6rSewumpYuXYqAgAA8//zzMJvNWLt2LQYPHoy+ffuib9++KC8vx9tvv+3KWIkUx5qgRo4cCT8/P7e2HRQUhEceeQSA+k7RMR8RNXb79m1s374dgPtHvh9k4MCB2LlzJzp06IDi4mKMHDkS//jHP3DixAmPuvWKRgghmvMGp06dQk1NDXr37u321T+NRiMCAwNhMBjcsngX0Q+NGjUKO3fuxHvvvYc5c+a4vf1FixZhwYIFSE1NxcaNG93evtLIzEcAcxLJtWvXLowcORLBwcGoqKhQ5K1Mjh8/jvj4eJSXl9v2+fn5ITIyEgMGDLBtkZGRaNeuncRI767ZRZNMTFAkk9FoRPv27VFXV4fS0lJ0797d7TEcPHgQQ4YMQevWrXHt2jX4+Pi4PQb6D+Ykkum3v/0tlixZgqlTp+LTTz+VHc49nTlzBosXL8ahQ4dw5MiRey6b0qlTpwaFVM+ePZu0wniPHj3g6+vb3LABOHAblY8//rjB42nTpjklACJPlZeXh7q6OnTv3l1KwQQAP/7xjxESEoIrV65g7969bp9XJQvzEVFjd17Jq2RdunTBqlWrAHy/evmJEydQUlLSYDt79izOnTuHc+fO4auvvmpWe9988w369u3rjNDtL5pWr15t+1qj0TBJkepZr5qTOeFSq9UiMTERn376KbKzs1VTNDEfETV0/vx5lJSUKGKpAUe0atUKvXv3Ru/evTFp0iTb/ps3b+LIkSMNCqnTp0+jKSfHnHmakqfniJpACIFOnTrhwoULyM7Otl3+L8Nnn32GqVOnIjIyEiUlJdLiIOYkkucvf/kLnnvuOcTGxmL//v2yw2mxpN6wl8hTHT58GBcuXIBer8eIESOkxjJ27FhoNBpbTESkPkoY+VYDFk1ETWCdOzBq1Cjo9XqpsQQHB2PIkCEA1Lf0ABEBZrMZubm5AJQ/n8nTsWgiagKlLSBnTZQsmojUZ+/evaisrERISAiio6Nlh9OisWgicpDBYEBhYSEA5RzVWedUbd++HXV1dZKjISJ3sp6aS0pKglbL/9ZdiT9dIgfl5ubCYrGgZ8+e6Natm+xwAABDhgxB+/btYTAYsG/fPtnhEJEbecpSAy2Bw0XT6tWrsX79+kb7169fj7/97W9OCYpIyZQ44dLLywtjx44FoK5TdMxHpHbnzp3DkSNHoNVqbTmAXMfhoikjIwPBwcGN9oeGhmLx4sVOCYpIqYQQtqJEaUd11lN01qNONWA+IrWz/r3Hxsaiffv2kqNp+RwumsrKytC1a9dG+yMiIlR3p3VSn5KSEpSXl8PPzw/Dhw+XHU4D1gXt/v3vf6OiokJyNO7BfERqp7SLUlo6h4um0NDQuy6gV1xczCqXWjzrqbn4+Hin3cvIWTp06GC7cmbr1q2So3EP5iNSMy414H4OF01PPfUUXnzxReTn58NiscBisWDHjh146aWXMGXKFFfESKQYSp9wqbZTdMxHpGaFhYWoqqpCaGgoBg0aJDscVbD73nNWixYtwpkzZ5CQkIBWrb5/eX19PaZNm8Y5BNSi3bx5E3v37gWg3KIpOTkZb731FrZt2waLxeLUey4pEfMRqdmdB3FcasA9mnzvudLSUhQVFUGv1yMyMhIRERHOju2BeJ8ncqf169dj0qRJ6N27N44dOyY7nLuqq6tDSEiIrcCLi4uTHZJbKCEfAcxJ5F79+vXD0aNH8fnnn2Py5Mmyw1EFh0earHr06IEePXo4MxYiRfOECZetWrXCmDFjsH79emRnZ6umaGI+IrU5e/Ysjh49yqUG3Mzh8bwJEyZgyZIljfa/8847mDhxolOCIlKa+vp6xc9nslLTLVWYj0itrPkoLi4O7dq1kxyNejhcNBUUFNz1SDs5ORkFBQVOCYpIaYqLi1FRUQF/f3889thjssO5L+tk8IMHD+LKlSuSo3Et5iNSK08Y+W6JHC6aqqqq4OPj02i/t7c3jEajU4IiUhprgkpISIBOp5Mczf2FhYUhKioKQogWv/QA8xGpkclkQl5eHgDlj3y3NA4XTZGRkVi7dm2j/Z9//jn69u3rlKCIlMa6PpOnJCi1nKJjPiI12r17N6qrq9GxY0cMHDhQdjiq4vBE8Pnz5+OnP/0pTp48ifj4eABAXl4e1qxZc9d7QBF5uhs3bthugutJRdPbb7+NrVu3or6+vsVejsx8RGp05/xKjUYjORp1cbhoSklJwaZNm7B48WJs2LABer0eAwYMQG5uLkaMGOGKGImk2rZtG+rr69G3b19pl7I7Ki4uDgEBAbh69SoOHjyImJgY2SG5BPMRqZGnjXy3JE1acmD8+PEYP358o/1HjhxB//79mx0UkZJ44oRLb29vjB49Gv/4xz+Qk5PTYosmgPmI1OXMmTP49ttv4eXlhTFjxsgOR3WaPWZfWVmJVatWISYmBlFRUc6IiUgx6uvrbfOCPO2ozhqvWm6pAjAfUctn/XseOnQo2rZtKzcYFWpy0VRQUIBp06YhLCwMS5cuRXx8PPbv3+/M2Iik+/e//41Lly6hdevWGDZsmOxwHGJdeuDAgQO4du2a5Ghci/mI1IKn5uRy6PRcRUUFPvroI2RlZcFoNGLSpEkwmUzYtGkTr1ShFsl6VDd69Oi7XtquZD/60Y/Qv39/HDlyBNu3b29xN7BlPiK1qa2txY4dOwB41nSBlsTukaaUlBT06tULJSUlyMzMRHl5OZYtW+bK2Iik8/SjupZ6io75iNSooKAANTU1CA8Px4ABA2SHo0p2F03Z2dl49tlnsXDhQowfP96pd09fvnw5unTpAl9fX8TGxuLAgQNOe2+iprp+/Tq+/vprAJ5bNFlP0VmXHmgpmI9IjbjUgHx2F02FhYWorKxEdHQ0YmNj8f777+Pq1avNDmDt2rWYO3cu0tPTcejQIURFRSExMRGXL19u9nsTNYd1qYH+/fujU6dOssNpkmHDhqF169a4dOkSioqKZIfjNMxHpEaecv/LFk04qKqqSmRlZYlHH31UeHt7C61WKzIzM4XRaHT0rYQQQsTExIhZs2bZHlssFhEeHi4yMjIe+FqDwSAACIPB0KS2ie7n6aefFgDEK6+8IjuUZnniiScEAPHmm2/KDsXplJSPhGBOItc5efKkACBatWolbt68KTsc1dIIIURTC67jx48jKysLn3zyCW7evIkxY8bgyy+/tPv1ZrMZfn5+2LBhA1JTU23709LScPPmTWzevPm+rzcajQgMDITBYEBAQMA9nyeEwLp16+yOiwgA5syZgytXriA/Px8jR46UHU6TrVy5EjNnzkRUVBRee+01l7fXqVMnDB061OXt/JDsfATYn5MOHz6Mo0eP2h0b0a5du7BixQqMGDECO3fulB2Oejmj8qqrqxMbN24UKSkpDr3uwoULAoDYu3dvg/3z5s0TMTExjZ5fW1srDAaDbTt37pxdR3UWi0UA4MbN4a1NmzbCbDY79LlWmjNnzrj1ZzZx4kSp/XVXPhKi6Tlp/vz50j/b3Dxze/vttx36XJNzOeWGVF5eXkhNTXXoqK4pMjIyEBgYaNvsnWei1WpRW1uL9PR01NbWQgihuo39b1r/jUYjvL29Xfq5drWIiAi3/v5lj+q6Kx8BTc9Jb7zxBv8m2f8m9f/VV1918afaPUwmE15//XWYTCbZoTikWafnmsvR4XCTydTgByyEgNlsRnBw8AOvJLB32LylYv/ZfzX33x5NOT3HnNR07D/774n9l3rrcx8fH0RHRyMvL8+2r76+Hnl5eYiLi2v0fJ1Oh4CAANsWGBiIkJAQXnpJRM3maD4CmJOI1KZJN+x1prlz5yItLQ2DBw9GTEwMMjMzUV1djenTp8sOjYhUhvmIiO5HetE0efJkXLlyBQsWLEBFRQUGDhyInJwcdOjQQXZoRKQyzEdEdD/SiyYAmD17NmbPnu3SNnQ6HdLT06HT6VzajlKx/+y/mvvvCHfkI4C/E/af/ffE/kudCE5ERETkKaROBCciIiLyFCyaiIiIiOzAoomIiIjIDiyaiIiIiOzAoomIiIjIDiyaiIiIiOzAoomIiIjIDiyaiIiIiOzAoomIiIjIDiyaiIiIiOzAoomIiIjIDiyaiIiIiOzAoomIiIjIDiyaiIiIiOzAoomIiIjIDiyaiIiIiOzAoomIiIjIDlKLpoKCAqSkpCA8PBwajQabNm2SGQ4RqRxzEhHdj9Siqbq6GlFRUVi+fLnMMIiIADAnEdH9tZLZeHJyMpKTk2WGQERkw5xERPfDOU1EREREdpA60uQok8kEk8lkeyyEgNlsRnBwMDQajcTIiEiNmJOI1MWjiqaMjAwsXLiw0X6DwYCAgAAJERH9R1FREcaPH4+amhro9Xro9Xr4+fnZvr7XYx8fH9TW1uLWrVu4desWampqbF/f63FYWBh27dqFDh06yO62qjEnkZL96le/wmeffebydjQaDeLi4jBjxgw88cQT0Ol0Lm9TFo0QQtjzxLKysgaPO3fu7NxANBps3LgRqamp93zOD4/qjEYjOnXqxARFivDCCy9gxYoVbmvvvffew5w5c9zWnpK4Oh8BzEnk2SoqKhAWFub2doODg5GWlobnnnsOvXr1cnv7rmb3SFOXLl2g0WgghIBGo4HFYnFlXHel0+ladAVLnksIgezsbADABx98gCFDhtx3tOjOzWQywdfX974jUndu69atQ0ZGBrKzs1VbNCkhHwHMSaRcW7duBQBERUVh8+bNLm2rqqoKa9euxV//+ldcuHAB7777Lt5991089thjmDFjBiZMmAC9Xu/SGNzF7qKpvr7e6Y1XVVXhxIkTtsenT59GUVERgoKCXHLkSOQqx48fx5kzZ+Dj44OpU6fC39/fZW21atUKGRkZyM/Px61bt1pMMnKEK/IRwJxELYf1IO7xxx9HRESEy9t74403sGDBAmRnZ+PDDz/EV199hd27d2P37t2YM2cOnn76aTz33HOIjIx0eSwuJSTKz88XABptaWlpdr3eYDAIAMJgMLg2UKIHePfddwUAMWbMGJe3VV9fLzp16iQAiC1btri8PTVhTqKW4Pbt26Jt27YCgNizZ4+UGM6fPy8WLVokIiIiGvwtPfLIIyIrK0tUVVVJiau57J7TZLVjxw4UFhbi4sWL0Gq16NatG37yk5+gR48ezqniHGA0GhEYGMj5AyTdmDFjkJubiz/96U/4r//6L5e39+tf/xqrVq3CnDlz8N5777m8PaVSUj4CmJNIGfbs2YNhw4ahXbt2uHLlCry8vKTFYrFYkJubiw8//BCbN29GXV0dAMDf3x8REREICgpC+/btERQUdM+vrf/6+fnBbDY3muLwoItnfvWrX6Fdu3bO6ZC91dWlS5dETEyM0Gq1olWrVkKr1Yro6GjRsWNH4eXlJebNm+e60u4eeFRHSlBZWSl8fHwEAHHs2DG3tLlx40YBQDz88MNuaU9plJiPhGBOImX43e9+JwCIKVOmyA6lgYqKCvH222+L7t2733VE90GbRqNp0uuOHj3qtD7YPafpxRdfRHh4OG7cuAGdToeXX34ZRqMRBw8exI4dOzBp0iQ89NBDeOmll5pVxBF5mh07dsBsNqNr165uu1okISEB3t7eOHnyJEpLS6WNrMjCfER0b9b5TEpb3b5Dhw549dVXMW/ePBw9ehSXL1/G9evXce3aNVy/fr3B1z/cd/v2bYg7ToxpNBq7l3Vx6hxTe6urgIAAceTIEdvjqqoq4e3tbTui+uSTT0SvXr2cVs3Zg0d1pATPP/+8ACBeeOEFt7YbHx8vAIjMzEy3tqsESsxHQjAnkXzl5eW2EZaKigrZ4ThFfX29qKysFOXl5eLGjRuitrZW1NfXS4nF7tuo6HS6BivcarVaWCwW2/nJoUOH4syZM86r5og8gBACW7ZsAQCMGzfOrW1b27MeVaoJ8xHR3eXk5AAABg8e3GIWv9VoNGjdujXCwsLQtm3bRn//7mR30TRs2DAsWLAA1dXVuH37Nn73u9+hW7duCAoKAgBcuXLFeROtiDzEsWPHUFZWBp1Oh1GjRrm1bevQ+86dO1FTU+PWtmVjPiK6O6Wemmsp7J7TtHTpUowdOxZt27aFRqOBv78/1q9fb/v+sWPH8Mwzz7giRiLFso4yjRgxAn5+fm5tu0+fPujcuTPKysqQn5+P8ePHu7V9mZiPiBqrq6vDtm3bALh/5Fst7C6aunXrhpKSEhQWFsJsNuORRx5BcHCw7ftMUKRG1qM6GQlKo9Fg3LhxWLlyJbKzs1VVNDEfETW2b98+GAwGtG/fHkOGDJEdTovk0A17/fz8MHbsWFfFQuRRKisrsXv3bgDyhsKTk5OxcuVKbNmyxXZLEbVgPiJqyHoQN3bsWKlrM7VkdhdNH3/8cYPH06ZNc3owRJ4kLy8Pt2/fxsMPPyztkv/4+Hj4+Pjg9OnT+O6771rkDTLvhvmIqDFZF6Woid1F0+rVq21fazQaJilSvTsnXMoa4WndujWGDx+O3NxcbNmyRTVFE/MRUUMXLlxAcXExNBoNEhMTZYfTYtldNOXn57syDiKPInOpgR8aN24ccnNzkZ2d7ZZbuCgB8xFRQ9alBoYMGYKQkBDJ0bRcdi85QET/8c033+D8+fPw9fXFyJEjpcZinU+1a9cuVFdXS42FiOTgUgPuwaKJqAmsCWrkyJHQ6/VSY+nVqxe6dOkCs9mMHTt2SI2FiNzv9u3b2L59OwD5I98tHYsmoiZQyqk54D9LDwDqXB2cSO327t0Lo9GI4OBgDB48WHY4LRqLJiIHGY1GFBYWAlDOULg1DuvSA0SkHtaDpcTERGi1/G/dlfjTJXJQbm4u6urq0KNHD3Tv3l12OACAUaNGQafT4ezZs/j2229lh0NEbqSkke+WzuGiafXq1Q1uV2C1fv16/O1vf3NKUERKpsQJl/7+/hgxYgQAdZ2iYz4itTt//jwOHz4MjUbDxV7dwOGiKSMjo8HtCqxCQ0OxePFipwRFpFRCCEUWTUDDU3RqwXxEamddaiA2NvaufwvkXA4XTWVlZejatWuj/RERESgrK3NKUERKdfjwYVy4cAF6vd42sqMU1qH5goICVFVVSY7GPZiPSO2sB0lKO4hrqRwumkJDQ1FSUtJof3FxMdq3b++UoIiUyjrKNGrUKOlLDfxQjx490K1bN9y+fRt5eXmyw3EL5iNSM7PZjNzcXAAsmtzF4aLpqaeewosvvoj8/HxYLBZYLBbs2LEDL730EqZMmeKKGIkUQ8kTLtW49ADzEanZnj17UFlZiZCQEERHR8sORxXsvo2K1aJFi3DmzBkkJCSgVavvX15fX49p06ZxDgG1aAaDAXv27AGg3KO65ORkvP/++7alB2TdE89dmI9IzawHR0lJSVxqwE00oomLupSWlqKoqAh6vR6RkZGIiIhwdmwPZDQaERgYCIPBgICAALe3T+ryxRdf4Gc/+xl69uyJ48ePyw7nrmpqahAUFASTyYQjR46gX79+skNyCyXkI4A5idwrMjISR44cwZo1aziy6iYOjzRZ9ejRAz169HBmLESKpuRTc1Z+fn4YNWoUcnJykJ2drZqiifmI1ObcuXM4cuQItFotlxpwI4fH8yZMmIAlS5Y02v/OO+9g4sSJTgmKSGmEELZLe5V6as5KTUsPMB+RWllPzcXGxiIoKEhyNOrhcNFUUFBw1yPt5ORkFBQUOCUoIqUpKSlBeXk5/Pz8MHz4cNnh3Jf177OwsBBGo1FyNK7FfERqZS2alDzy3RI5XDRVVVXBx8en0X5vb+8Wn6BJvayjNvHx8fD19ZUczf11794d3bt3V8XSA8xHpEZcakAeh4umyMhIrF27ttH+zz//HH379nVKUERK42lHdWpZeoD5iNSosLAQVVVV6NChAwYNGiQ7HFVxeCL4/Pnz8dOf/hQnT55EfHw8ACAvLw9r1qy56z2giDzdzZs3sXfvXgCec1SXnJyM9957D9nZ2S166QHmI1Ij68g3lxpwP4eLppSUFGzatAmLFy/Ghg0boNfrMWDAAOTm5iruthJEzrB9+3ZYLBb07t0bXbp0kR2OXUaMGAFfX1+cP38eR44cQWRkpOyQXIL5iNRIqfe/VIMmLTkwfvx4jB8/vtH+I0eOoH///s0OikhJPO3UHADo9XrEx8djy5YtyM7ObrFFE8B8ROpy9uxZHD16lEsNSNLscb3KykqsWrUKMTExiIqKckZMRIpRX1/vsUd1alp6wIr5iFo6az6Ki4tDu3btJEejPk0umgoKCjBt2jSEhYVh6dKliI+Px/79+50ZG5F0xcXFqKiogL+/Px577DHZ4TjEOjK2Z88eGAwGydG4FvMRqYUnjny3JA6dnquoqMBHH32ErKwsGI1GTJo0CSaTCZs2beKVKtQiWUdpEhISoNPpJEfjmG7duqFnz5747rvvkJubiwkTJsgOyamYj0htTCaTbRkRTxv5binsHmlKSUlBr169UFJSgszMTJSXl2PZsmWujI1IOk89NWdljbulLT3AfERqtHv3blRXV6Njx44YOHCg7HBUye6iKTs7G88++ywWLlyI8ePHw8vLy2lBLF++HF26dIGvry9iY2Nx4MABp703UVPduHED+/btA+C5RdOd6zU18d7cisR8RGp050FcS11GROnsLpoKCwtRWVmJ6OhoxMbG4v3338fVq1ebHcDatWsxd+5cpKen49ChQ4iKikJiYiIuX77c7Pcmao5t27ahvr4effv2RUREhOxwmmT48OHw8/NDeXk5SkpKZIfjNMxHpEbW6QKeehDXIggHVVVViaysLPHoo48Kb29vodVqRWZmpjAajY6+lRBCiJiYGDFr1izbY4vFIsLDw0VGRsYDX2swGAQAYTAYmtQ20f2kpaUJAOLll1+WHUqzPP744wKAXX9TnkZJ+UgI5iRynVOnTgkAwsvLS9y4cUN2OKqlEaLpY/bHjx9HVlYWPvnkE9y8eRNjxozBl19+affrzWYz/Pz8sGHDBqSmptr2p6Wl4ebNm9i8efN9X280GhEYGAiDwYCAgIB7Pk8IgY0bN9odFxEAzJw5E5cvX0ZeXp5ttWlP9Oc//xmzZs3CoEGD8Ic//MHl7T300EOIjY11eTs/JDsfAfbnpKNHj+Lbb7+1OzainTt3YtmyZXjsscd4M2qZnFF51dXViY0bN4qUlBSHXnfhwgUBQOzdu7fB/nnz5omYmJhGz6+trRUGg8G2nTt3zq6jOovFIgBw4+bw1rp1a2EymRz6XCuN9QjVXdvEiROl9tdd+UiIpuek+fPnS/9sc/PMbfHixQ59rsm5nHLTGi8vL6Smpjp0VNcUGRkZCAwMtG2dOnWy63VarRa1tbVIT09HbW0thBCq29j/pvW/srISPj4+Lv1cu1rXrl3d+vtft26d1P66Kx8BTc9Jb7zxBv8m2f8m9f+1115z8afaPUwmE15//XWYTCbZoTikWafnmsvR4XCTydTgByyEgNlsRnBw8AOvJLB32LylYv/ZfzX33x5NOT3HnNR07D/774n9l3p7ZB8fH0RHR9sW6wK+v21FXl4e4uLiGj1fp9MhICDAtgUGBiIkJISXXhJRszmajwDmJCK1adINe51p7ty5SEtLw+DBgxETE4PMzExUV1dj+vTpskMjIpVhPiKi+5FeNE2ePBlXrlzBggULUFFRgYEDByInJwcdOnSQHRoRqQzzERHdj/SiCQBmz56N2bNnu7QNnU6H9PR0j7t/mLOw/+y/mvvvCHfkI4C/E/af/ffE/kudCE5ERETkKaROBCciIiLyFCyaiIiIiOzAoomIiIjIDqopmpYvX44uXbrA19cXsbGxOHDggOyQ3OL111+HRqNpsPXu3Vt2WC5TUFCAlJQUhIeHQ6PRYNOmTQ2+L4TAggULEBYWBr1ej9GjR6O0tFROsC7woP4/88wzjT4PSUlJcoJVMeYj5iOA+cgT85Eqiqa1a9di7ty5SE9Px6FDhxAVFYXExERcvnxZdmhu0a9fP1y8eNG2FRYWyg7JZaqrqxEVFYXly5ff9fvvvPMO3nvvPaxcuRJff/01/P39kZiYiNraWjdH6hoP6j8AJCUlNfg8rFmzxo0REvMR85EV85EH5iOhAjExMWLWrFm2xxaLRYSHh4uMjAyJUblHenq6iIqKkh2GFADExo0bbY/r6+tFx44dxR//+Efbvps3bwqdTifWrFkjIULX+mH/hRAiLS1NPPHEE1Lioe8xH0XJDkMK5qOWkY9a/EiT2WzG//3f/2H06NG2fVqtFqNHj8a+ffskRuY+paWlCA8PR7du3TB16lSUlZXJDkmK06dPo6KiosFnITAwELGxsar5LADAzp07ERoail69emHmzJm4du2a7JBUg/mI+ciK+eh7npaPWnzRdPXqVVgslkYr+nbo0AEVFRWSonKf2NhYfPTRR8jJycGKFStw+vRpPPbYY6isrJQdmttZf99q/SwA3w+Ff/zxx8jLy8OSJUuwa9cuJCcnw2KxyA5NFZiPmI+smI88Mx8pYkVwcp3k5GTb1wMGDEBsbCwiIiKwbt06PPvssxIjIxmmTJli+zoyMhIDBgzAww8/jJ07dyIhIUFiZKQGzEd0J0/MRy1+pCk4OBheXl64dOlSg/2XLl1Cx44dJUUlT9u2bdGzZ0+cOHFCdihuZ/1987PwH926dUNwcLAqPw8yMB81xHzEfHQnT8hHLb5o8vHxQXR0NPLy8mz76uvrkZeXh7i4OImRyVFVVYWTJ08iLCxMdihu17VrV3Ts2LHBZ8FoNOLrr79W5WcBAM6fP49r166p8vMgA/NRQ8xHzEd38oR8pIrTc3PnzkVaWhoGDx6MmJgYZGZmorq6GtOnT5cdmsu9/PLLSElJQUREBMrLy5Geng4vLy889dRTskNziaqqqgZHKadPn0ZRURGCgoLQuXNn/OY3v8Gbb76JHj16oGvXrpg/fz7Cw8ORmpoqL2gnul//g4KCsHDhQkyYMAEdO3bEyZMn8corr6B79+5ITEyUGLW6MB8xHzEfeXA+kn35nrssW7ZMdO7cWfj4+IiYmBixf/9+2SG5xeTJk0VYWJjw8fERDz30kJg8ebI4ceKE7LBcJj8/XwBotKWlpQkhvr/Md/78+aJDhw5Cp9OJhIQEcfz4cblBO9H9+l9TUyPGjh0rQkJChLe3t4iIiBDPPfecqKiokB226jAfMR8JwXzkiflII4QQ7i3TiIiIiDxPi5/TREREROQMLJqIiIiI7MCiiYiIiMgOLJqIiIiI7MCiiYiIiMgOLJqIiIiI7MCiiYiIiMgOLJqIiIiI7MCiiTyeRqPBpk2bZIdBRASAOaklY9FEzfLMM89Ao9E02pKSkmSHRkQqxJxErqSKG/aSayUlJWH16tUN9ul0OknREJHaMSeRq3CkiZpNp9OhY8eODbZ27doB+H6YesWKFUhOToZer0e3bt2wYcOGBq8/fPgw4uPjodfr0b59e8yYMQNVVVUNnvPXv/4V/fr1g06nQ1hYGGbPnt3g+1evXsWTTz4JPz8/9OjRA19++aXtezdu3MDUqVMREhICvV6PHj16NEqoRNRyMCeRq7BoIpebP38+JkyYgOLiYkydOhVTpkzBsWPHAADV1dVITExEu3bt8K9//Qvr169Hbm5ugwS0YsUKzJo1CzNmzMDhw4fx5Zdfonv37g3aWLhwISZNmoSSkhKMGzcOU6dOxfXr123tHz16FNnZ2Th27BhWrFiB4OBg9/0AiEhRmJOoyQRRM6SlpQkvLy/h7+/fYHvrrbeEEEIAEM8//3yD18TGxoqZM2cKIYRYtWqVaNeunaiqqrJ9/6uvvhJarVZUVFQIIYQIDw8Xv//97+8ZAwDxhz/8wfa4qqpKABDZ2dlCCCFSUlLE9OnTndNhIlI05iRyJc5pomYbNWoUVqxY0WBfUFCQ7eu4uLgG34uLi0NRUREA4NixY4iKioK/v7/t+48++ijq6+tx/PhxaDQalJeXIyEh4b4xDBgwwPa1v78/AgICcPnyZQDAzJkzMWHCBBw6dAhjx45Famoqhg4d2qS+EpHyMSeRq7Boombz9/dvNDTtLHq93q7neXt7N3is0WhQX18PAEhOTsbZs2exZcsWbN++HQkJCZg1axaWLl3q9HiJSD7mJHIVzmkil9u/f3+jx3369AEA9OnTB8XFxaiurrZ9f8+ePdBqtejVqxfatGmDLl26IC8vr1kxhISEIC0tDZ9++ikyMzOxatWqZr0fEXku5iRqKo40UbOZTCZUVFQ02NeqVSvbxMb169dj8ODBGDZsGP7+97/jwIEDyMrKAgBMnToV6enpSEtLw+uvv44rV65gzpw5ePrpp9GhQwcAwOuvv47nn38eoaGhSE5ORmVlJfbs2YM5c+bYFd+CBQsQHR2Nfv36wWQy4Z///KctQRJRy8OcRC4je1IVeba0tDQBoNHWq1cvIcT3EyKXL18uxowZI3Q6nejSpYtYu3Ztg/coKSkRo0aNEr6+viIoKEg899xzorKyssFzVq5cKXr16iW8vb1FWFiYmDNnju17AMTGjRsbPD8wMFCsXr1aCCHEokWLRJ8+fYRerxdBQUHiiSeeEKdOnXL+D4OIpGNOIlfSCCGEjGKN1EGj0WDjxo1ITU2VHQoREXMSNQvnNBERERHZgUUTERERkR14eo6IiIjIDhxpIiIiIrIDiyYiIiIiO7BoIiIiIrIDiyYiIiIiO7BoIiIiIrIDiyYiIiIiO7BoIiIiIrIDiyYiIiIiO7BoIiIiIrLD/wcVA8j8ELjXKQAAAABJRU5ErkJggg==\n" + }, + "metadata": {} + } + ], + "source": [ + "# Finally, we plot the results and optionally compare the three different training setups.\n", + "# Try to adapt and extend the plotting function to the needs of your experimental setup.\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "\n", + "fig, axes = plt.subplots(10, 2, figsize = (6, 8), sharex = True)\n", + "\n", + "# Iterate over the different training setups for comparison\n", + "for log_id, logs in enumerate([history_catastrophic_forgetting, history_memory_replay]):\n", + " # Format the logs into a dataframe\n", + " logs = format_results(logs)\n", + "\n", + " # Iterate through the 10 different MNIST classes (0...9). We will plot one subpanel\n", + " # for each of them, showing the accuracies for that particular class over the course\n", + " # of the entire training.\n", + " for class_ in range(10):\n", + " # Get the correct subpanel of the plot\n", + " ax = axes[class_, log_id]\n", + " \n", + " # Draw a line plot: The x axis will be the epoch, the y axis will be the accuarcy\n", + " # for predicting a particular class.\n", + " ax.plot(logs.epoch, logs[class_], color = 'black')\n", + " \n", + " # Finally, we will optimize the plot a bit and remove unneeded lines\n", + " ax.set_ylim([0, 1])\n", + " ax.set_ylabel(f\"Acc '{class_}'\")\n", + " sns.despine(bottom = True, trim = True)\n", + "\n", + " ax.set_xlabel(\"Epochs\")\n", + "plt.tight_layout()\n", + "plt.show()" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, + "gpuClass": "standard", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.3" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file